For long wave length infrared transmission, a surface plasmonic device, having the periodic subwavelength metal hole array on Si substrate, was fabricated using photo-lithography and electron beam evaporation. The maximum transmitted wavelength was adjustable arbitrarily as a function of the period hole arrays. The maximum transmittance was measured 70.3% at 15.4 μm with a plasmonic device composed of a pitch of 5 μm and hole arrays of 3 μm. When the hole size became larger than a half pitch of the hole array, the transmitted infrared spectrum was split into two peaks. The surface plasmon mode of the six degenerated (1,0) Ag/Si was split from three to five modes depending on the incident beam angle. The blue and red wavelength shifts were measured at the same time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.