Crack-free GaN-based light-emitting diodes (LEDs) were grown on 150-mm-diameter Si substrates by using low-pressure metal-organic chemical vapor deposition. The relationship between the LED devices and the thickness of quantum barriers (QBs) was investigated. The crystal quality and surface cracking of GaN-on-Si were greatly improved by an AlxGa1−xN buffer layer composed of graded Al. The threading dislocation density of the GaN-on-Si LEDs was reduced to <7×108 cm−2, yielding LEDs with high internal quantum efficiency. Simulation results indicated that reducing the QB thickness improved the carrier injection rate and distribution, thereby improving the droop behavior of the LEDs. LEDs featuring 6-nm-thick QBs exhibited the lowest droop behavior. However, the experimental results showed an unanticipated phenomenon, namely that the peak external quantum efficiency (EQE) and light output power (LOP) gradually decreased with a decreasing QB thickness. In other words, the GaN-on-Si LEDs with 8-nm-thick QBs exhibited low droop behavior and yielded a good peak EQE and LOP, achieving a 22.9% efficiency droop and 54.6% EQE.
We use thinner-quantum well to improve the droop behavior of GaN-base light emitting diode in simulation. Taking the advantage of that the thin quantum well will saturate easily, this characteristic of thin well will improve carrier distribution. Furthermore, this structure has more wave-function overlap than that of the thick well. This simulation result showed that decreasing the well thickness in specific position will not only improve the holes transport but also increase the quantum efficiency at high current density in the active region, and the efficiency droop behavior can be effectively suppressed. In this research, we designed three thin well structures by inserting different numbers of thin wells in the active region. We have compared them to the conventional LEDs, for which, the well thickness of 2.5 nm is used. The thin well structures have better droop behavior than conventional LED.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.