We develop and study two approaches for the prediction of optical refraction effects in the lower atmosphere. Refraction can cause apparent displacement or distortion of targets when viewed by imaging systems or produce steering when propagating laser beams. Low-cost, time-lapse camera systems were deployed at two locations in New Mexico to measure image displacements of mountain ridge targets due to atmospheric refraction as a function of time. Measurements for selected days were compared with image displacement predictions provided by (1) a ray-tracing evaluation of numerical weather prediction data and (2) a machine learning algorithm with measured meteorological values as inputs. The model approaches are described and the target displacement prediction results for both were found to be consistent with the field imagery in overall amplitude and phase. However, short time variations in the experimental results were not captured by the predictions where sampling limitations and uncaptured localized events were factors.
This work details the analysis of time-lapse images with a point-tracking image processing approach along with the use of an extensive numerical weather model to investigate image displacement due to refraction. The model is applied to create refractive profile estimates along the optical path for the days of interest. Ray trace analysis through the model profiles is performed and comparisons are made with the measured displacement results. Additionally, a supervised machine learning algorithm is used to build a predictive model to estimate the apparent displacement of an object, based on a set of measured metrological values taken in the vicinity of the camera. The predicted results again are compared with the field-imagery ones.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.