Rapid prototyping of photovoltaic (PV) cells requires a method for the simultaneous simulation of the optical and electrical characteristics of the device. The development of nanomaterial-enabled PV cells only increases the complexity of such simulations. Here, we use a commercial technology computer aided design (TCAD) software, Silvaco Atlas, to design and model plasmonic gold nanoparticles integrated in optoelectronic device models of thin-film amorphous silicon (a-Si:H) PV cells. Upon illumination with incident light, we simulate the optical and electrical properties of the cell simultaneously and use the simulation to produce current–voltage (J−V) and external quantum efficiency plots. Light trapping due to light scattering and localized surface plasmon resonance interactions by the nanoparticles has resulted in the enhancement of both the optical and electrical properties due to the reduction in the recombination rates in the photoactive layer. We show that the device performance of the modeled plasmonic a-Si:H PV cells depends significantly on the position and size of the gold nanoparticles, which leads to improvements either in optical properties only, or in both optical and electrical properties. The model provides a route to optimize the device architecture by simultaneously optimizing the optical and electrical characteristics, which leads to a detailed understanding of plasmonic PV cells from a design perspective and offers an advanced tool for rapid device prototyping.
Flexible radiation dosimeters have been produced incorporating thick films (>1 μm) of the semiconducting polymer
poly([9,9-dioctylfluorenyl-2,7-diyl]-co-bithiophene). Diode structures produced on aluminium-metallised poly(imide)
substrates, and with gold top contacts, have been examined with respect to their electrical properties. The results suggest
that a Schottky conduction mechanism occurs in the reverse biased diode, with a barrier to charge injection at the
aluminium electrode. Optical absorption/emission spectra reveal a band gap of 2.48 eV for the polymer. The diodes have
been used for direct charge detection of 17 keV X-rays, generated by a molybdenum source. Using operating voltages of
-10 and -50 V respectively, sensitivities of 54 and 158 nC/mGy/cm3 have been achieved. Increasing the operating
voltage shows that the diodes are stable up to approximately -200 V without significant increase in the dark current of
the device (<0.2 nA).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.