Current-generation solar observatories employ CCD image sensors to observe the Sun in the soft x-ray (SXR) and extreme ultraviolet (EUV) regimes. However, these observations are often compromised by pixel saturation and charge blooming in the CCD image sensors when observing large solar flares. To address these limitations, the Swift Solar Activity x-ray Imager Rocket (SSAXI-Rocket) program is developing CMOS image sensors (CIS) with low noise and high-speed readout (greater than 5Hz) for next-generation solar observatories. These CIS aim to enable the observation of large solar flares while significantly reducing the effects of pixel saturation and charge blooming. As a part of NASA’s 2024 solar flare sounding rocket campaign, the SSAXI-Rocket program demonstrated delta-doped CIS technology in a space environment by operating a novel camera as a sub-payload on board the High-Resolution Coronal Imager (Hi-C) sounding rocket. This paper describes the pre-launch laboratory tests performed with the SSAXI-Rocket CIS to characterize its linearity and soft x-ray spectral resolution.
The Swift Solar Activity X-Ray Imager (SSAXI-Rocket) sounding rocket experiment is a direct-imaging, soft Xray telescope optimized for the observation of large (GOES C class-X class) solar flares. SSAXI-Rocket has high temporal sampling cadence (> 5 Hz) enabled by a fast-readout CMOS detector. A single Wolter-1 optic focuses light onto the detector plane. The optic has a 15.8′′ half-power diameter (HPD) angular resolution on-axis and an effective area of 0.64 cm2 at 4.5 keV. The SSAXI-Rocket camera reads out a spectrally integrated signal, and the system spatial resolution is designed to be < 16′′ HPD over the instrument field of view (> 55′ × 55′). The detector is a back-illuminated delta doped CMOS (2048 × 2048 pixels) with 10 μm pitch pixels. This manuscript details our instrument design, and overviews the processes employed in telescope alignment, testing, delivery, and integration onto the Hi-C Sounding Rocket. We present the “as-built” projected flight performance of the delivered SSAXI-Rocket flight system, obtained by synthesizing the results of pre-flight subsystem testing and measurements performed during system integration and alignment.
Swift Solar Activity X-ray Image (SSAXI-Rocket), mounted on the High-Resolution Coronal Imager (Hi-C) as a sub-payload, is a wide field solar X-ray imager designed to image Solar X-ray flares at high cadence (>5 Hz). SSAXI-Rocket consists of a Wolter-I optic with a focal length of 1 m, coupled with a monolithic CMOS X-ray sensor at the focal plane. The optics for SSAXI-Rocket were fabricated using the Electroformed Ni Replication (ENR) technique at Center for Astrophysics, Harvard-Smithsonian. Each optic has both parabolic and hyperbolic sections with 62 mm diameter at the inflection plane with a total optic length of 18 cm. The performance of the flight and flight spare optic mounted on a spider was measured at the Marshall Space Flight Center (MSFC) Stray Light Testing Facility (SLTF) to characterize the Point Spread Function (PSF) and Effective Area (EA). The flight optic selected for SSAXI-Rocket shows on-axis 16′′ Half Power Diameter (HPD) and 5′′ Full Width Half Maximum (FWHM) at 4.5 keV, exceeding the 23′′ HPD and 9′′ FWHM requirement. The effective area is about 0.64 cm2 at 4.5 keV. Coupled with the fast readout of an X-ray CMOS sensor, this optic enables rapid high-resolution X-ray imaging over a wide field of view (> 20′ x 20′). Here we review the design, fabrication and testing of the SSAXI-Rocket optic and summarize its performance.
The Swift Solar Activity X-ray Imager (SSAXI-Rocket) is a ride-along instrument to the High-Resolution Coronal Imager (Hi-C) Flare NASA sounding rocket launch campaign scheduled for the Spring 2024. In the short 5- minute rocket flight, SSAXI-Rocket will measure the soft X-ray near-peak emission phase of a large solar flare of GOES C-class or greater. The SSAXI-Rocket instrument has peak sensitivity to 10 MK solar plasma, similar to the current Hi-C flare extreme ultraviolet instruments, providing the exploration of the variability in heating and energy transport of solar flares. SSAXI-Rocket combines small X-ray focusing optic (Wolter-I) with onaxis imaging resolution of 9 arcseconds or better and high-speed readout CMOS detector, to image the flare soft X-rays at 5 hertz or faster, with minimized image saturation and pixel signal blooming. These high-time cadence measurements can help uncover the soft X-ray intensity variations which can provide constraints on the intermittent heating processes in the flare magnetic loops. SSAXI-Rocket is the testbed for technology that is planned for future heliophysics and astronomy SmallSat, CubeSat, and large satellite X-ray observatories.
Axion is a promising dark matter candidate as well as a solution to the strong charge-parity (CP) problem in quantum chromodynamics (QCD). We describe a new concept for SmallSat Solar Axion and Activity X-ray Telescope (SSAXI) to search for solar axions or axion-like particles (ALPs) and to monitor solar activity over a wide dynamic range. SSAXI aims to unambiguously identify X-rays converted from axions in the solar magnetic field along the line of sight to the solar core, effectively imaging the solar core. SSAXI employs Miniature lightweight Wolter-I focusing X-ray optics (MiXO) and monolithic CMOS X-ray sensors in a compact package. The wide energy range (0.5 - 5 keV) of SSAXI can easily distinguish spectra of axion-converted X-rays from solar X-ray spectra, while encompassing the prime energy band (3 - 4.5 keV) of axion-converted X-rays. The high angular resolution (30 arcsec) and large field of view (40 arcmin) in SSAXI will easily resolve the enhanced X-ray flux over the 3 arcmin wide solar core while fully covering the X-ray activity over the entire solar disc. The fast readout in the inherently radiation tolerant CMOS X-ray sensors enables high resolution spectroscopy over a wide dynamic range with a broad range of operational temperatures. We present multiple mission implementation options for SSAXI under ESPA class. SSAXI will operate in a Sun-synchronous orbit for 1 yr preferably near a solar minimum to accumulate sufficient X-ray photon statistics.
The first detected exoplanets found were "hot Jupiters"; these are large Jupiter-like planets in close orbits with their host star. The stars in these so-called "hot Jupiter systems" can have significant X-ray emission and the X-ray flux likely changes the evolution of the overall star-planetary system in at least two ways: (1) the intense high energy flux alters the structure of the upper atmosphere of the planet - in some cases leading to significant mass loss; (2) the angular momentum and magnetic field of the planet induces even more activity on the star, enhancing its X-rays, which are then subsequently absorbed by the planet. If the alignment of the systems is appropriate, the planet will transit the host star. The resulting drop in flux from the star allows us to measure the distribution of the low-density planetary atmosphere. We describe a science mission concept for a SmallSat Exosphere Explorer of hot Jupiters (SEEJ; pronounced "siege"). SEEJ will monitor the X-ray emission of nearby X-ray bright stars with transiting hot Jupiters in order to measure the lowest density portion of exoplanet atmospheres and the coronae of the exoplanet hosts. SEEJ will use revolutionary Miniature X-ray Optics (MiXO) and CMOS X-ray detectors to obtain sufficient collecting area and high sensitivity in a low mass, small volume and low-cost package. SEEJ will observe scores of transits occurring on select systems to make detailed measurements of the transit depth and shape which can be compared to out-of-transit behavior of the target system. The depth and duration of the flux change will allow us to characterize the exospheres of multiple hot Jupiters in a single year. In addition, the long baselines (covering multiple stellar rotation periods) from the transit data will allow us to characterize the temperature, flux and flare rates of the exoplanet hosts at an unprecedented level. This, in turn, will provide valuable constraints for models of atmospheric loss. In this contribution we outline the science of SEEJ and focus on the enabling technologies Miniature X-ray Optics and CMOS X-ray detectors.
Conventional aluminum-coated mirrors operating at far ultraviolet wavelengths (90–200 nm) utilize protective overcoats of metal fluoride thin films deposited by physical vapor deposition. The use of atomic layer deposition (ALD) holds promise in improving spatial reflectance uniformity and reducing the required thickness of the protective layers. Achieving a stable, pinhole-free, ultrathin (<3 nm) overcoat would allow protected Al mirrors to approach the ideal Al intrinsic reflectivity in the challenging, but spectrally-rich, 90–115 nm range. However, combining ALD methods with high performance evaporated Al layers has technical challenges associated with the formation of undesirable interfacial oxide. To overcome this issue, we demonstrate the use of thermal atomic layer etching (ALE) methods to remove this oxide prior to ALD encapsulation. This paper describes our continuing work to optimize new ALD processes for the metal fluoride materials of MgF2, AlF3 and LiF. We also describe new work on low temperature (<200 °C) ALE methods utilizing a fluorination-volatilization approach that has been incorporated into our mirror development efforts. The scalability of this overall approach and the environmental stability of ALD/ALE Al mirrors is discussed in the context of possible future astrophysics applications such as the NASA LUVOIR and HabEx mission concepts. The use of this combined ALE/ALD method may also enable a fabrication platform in space that can renew or reconfigure protective overcoats on Al mirrors on-orbit, as an alternative to other space-based metal coating methods considered previously.
High-performance aluminum mirrors at far ultraviolet wavelengths require transparent dielectric materials as protective coatings to prevent oxidation. Reducing the thickness of this protective layer can result in additional performance gains by minimizing absorption losses, and provides a path toward high Al reflectance in the challenging wavelength range of 90 to 110 nm. We have pursued the development of new atomic layer deposition processes (ALD) for the metal fluoride materials of MgF2, AlF3 and LiF. Using anhydrous hydrogen fluoride as a reactant, these films can be deposited at the low temperatures required for large-area surface-finished optics and polymeric diffraction gratings. We also report on the development and application of an atomic layer etching (ALE) procedure to controllably etch native aluminum oxide. Our ALE process utilizes the same chemistry used in the ALD of AlF3 thin films, allowing for a combination of high-performance evaporated Al layers and ultrathin ALD encapsulation without requiring vacuum transfer. Progress in demonstrating the scalability of this approach, as well as the environmental stability of ALD/ALE Al mirrors are discussed in the context of possible future applications for NASA LUVOIR and HabEx mission concepts.
Numerous atomic and molecular transitions that provide important diagnostics for astrophysical research exist in the
Lyman-ultraviolet (LUV; 91.2 - 121.6 nm) and far-ultraviolet (FUV; 121.6 - 200 nm) bandpasses. Future astronomy and
planetary science missions require the development of mirror coatings with improved reflectance between 90 - 200 nm
which maintain optical performance in visible and IR wavelengths (320 - 2000 nm). Towards this end, we have developed
an atomic layer deposition (ALD) process for optical coatings to enhance the efficiency of future space observatories. We
measured the reflectance from 115-826 nm of sample optics, consisting of silicon wafers coated with lithium fluoride films
deposited via ALD. We also measured the reflectance of sample optics stored in various environments, and characterized
the effect of storage environment on visible and UV optical performance over week-long time scales. Minimal change in
optical performance was observed for wavelengths between 200 and 800 nm, regardless of storage environment.
Atomic Layer Deposition (ALD) can create conformal, near stoichiometric and pinhole free transmissive metal fluoride coatings to protect reflective aluminum films. Spectral performance of astronomical mirror coatings strongly affect the science capabilities of astronomical satellite missions. We are utilizing ALD to create a transmissive overcoat to protect aluminum film mirrors from oxidation with the goal of achieving high reflectance (> 80%) from the UV (~100 nm) to the IR (~2,000 nm). This paper summarizes the recent developments of ALD aluminum fluoride (AlF3) coatings on Al. Reflectance measurements of aluminum mirrors protected by ALD AlF3 and future applications are discussed. These measurements demonstrate that Al + ALD AlF3, even with an interfacial oxide layer of a few nanometers, can provide higher reflectance than Al protected by traditional physical vapor deposited MgF2 without an oxide layer, below ~115 nm.
The Miniature X-ray Solar Spectrometer (MinXSS) are twin 3U CubeSats. The first of the twin CubeSats (MinXSS-1) launched in December 2015 to the International Space Station for deployment in mid-2016. Both MinXSS CubeSats utilize a commercial off the shelf (COTS) X-ray spectrometer from Amptek to measure the solar irradiance from 0.5 to 30 keV with a nominal 0.15 keV FWHM spectral resolution at 5.9 keV, and a LASP-developed X-ray broadband photometer with similar spectral sensitivity. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. The majority of previous solar soft X-ray measurements have been either at high spectral resolution with a narrow bandpass or spectrally integrating (broadband) photometers. MinXSS will conduct unique soft X-ray measurements with moderate spectral resolution over a relatively large energy range to study solar active region evolution, solar flares, and the effects of solar soft X-ray emission on Earth’s ionosphere. This paper focuses on the X-ray spectrometer instrument characterization techniques involving radioactive X-ray sources and the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF). Spectrometer spectral response, spectral resolution, response linearity are discussed as well as future solar science objectives.
Metallic aluminum mirrors remain the best choice for high reflectance applications at ultraviolet wavelengths (90 to 320 nm) and maintain good performance through optical and infrared wavelengths. Transparent protective coatings are required to prevent the formation of an oxide layer, which severely degrades reflectance at wavelengths below 250 nm. We report on the development of atomic layer deposition (ALD) processes for thin protective films of aluminum fluoride that are viable for application at substrate temperatures <200°C. Reflectance measurements of aluminum films evaporated in ultrahigh vacuum conditions, and protected mirrors encapsulated with ALD AlF3 are used to evaluate the far ultraviolet (90 to 190 nm) and near ultraviolet (190 to 320 nm) performance of both the ALD material and the underlying metal. Optical modeling is used to predict the performance of optimized structures for future astronomical mirror applications.
Reflective aluminum (Al) mirrors for astronomical telescopes are traditionally protected by a transmissive overcoat. The optical, mechanical and chemical properties of this overcoat material strongly affect the spectral reflective properties and durability of the mirror system. We are developing atomic layer deposited metal fluorides and assessing their applicability for future astronomical space missions in the ultraviolet and visible wavelengths. We are currently performing depositions on silicon wafers to serve as a basis for the metal-fluoride on Al depositions. In this paper we present reflectance, surface roughness, environmental storage and polarization sensitivity results of thin layers of AlF3 on silicon. Atomic layer deposited coatings of AlF3 grown at 100 and 200 °C yield good optical characteristics deduced from reflectance measurements from 90 – 800 nm and spectroscopic ellipsometry measurements from 200 – 800 nm, which are consistent with calculations from optical constants derived by our group and from the literature. Atomic force microscopy (AFM) measurements demonstrate a 15% increase in surface roughness for a ~25 nm film with respect to a silicon reference. Temporary storage in a gN2 box minimally affects the UV reflectance of ~30 nm of AlF3 on Si. Overall, these coatings have proven to be versatile and optically stable in the early phases of development.
Astronomical observations in the Lyman–ultraviolet (91 – 122 nm) are limited in part by the performance of reflective coatings. Currently, the best reflective mirror options for the UV wavelength range of 90 -122 nm are LiF+Al (R ~ 60% from 102 – 200 nm) and SiC (R ~ 30 % from 90 – 200 nm). Higher reflectivity coatings in the 90 – 122 nm range will improve sensitivity and allow for more complex instrumentation. We are working to develop, laboratory test and eventually space test new reflective UV coatings (R > 70% from 90 – 115 nm) that also preserve high-reflectivity performance (R > 80% from 115 – 800 nm) throughout the longer-wavelength vacuum ultraviolet and visible spectral bands. We present a progress report on our work with new protective thin film deposition techniques of metal fluorides (MgF2 and AlF3) on high intrinsic broadband reflective metal (aluminum) surfaces. We present first test results from both traditional and atomic layer deposition processes. In this paper, we discuss the current status of the deposition process, coating substrates, reflectivity measurements for optical through far-ultraviolet wavelengths as well as environmental storage sensitivities.
We present the flight performance and preliminary science results from the first flight of the Sub-orbital Local
Interstellar Cloud Experiment (SLICE). SLICE is a rocket-borne far-ultraviolet instrument designed to study the diffuse
interstellar medium. The SLICE payload comprises a Cassegrain telescope with LiF-coated aluminum optics feeding a
Rowland Circle spectrograph operating at medium resolution (R ~ 5000) over the 102 – 107 nm bandpass. We present a
novel method for cleaning LiF-overcoated Al optics and the instrumental wavelength calibration, while the details of the
instrument design and assembly are presented in a companion proceeding (Kane et al. 2013). We focus primarily on
first results from the spring 2013 launch of SLICE in this work. SLICE was launched aboard a Terrier-Black Brant IX
sounding rocket from White Sands Missile Range to observe four hot stars sampling different interstellar sightlines. The
instrument acquired approximately 240 seconds of on-target time for the science spectra. We observe atomic and
molecular transitions (HI, OI, CII, OVI, H2) tracing a range of temperatures, ionization states, and molecular fractions in
diffuse interstellar clouds. Initial spectral synthesis results and future plans are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.