Optical and photoluminescence 3D imaging of small fused silica laser-induced damage sites allows us to understand the damage growth mechanisms. The laser damage growth process is driven by local absorption centers and its location and depth are the key factors. To quantitatively extract the factors from the 3D multi-modal image data set, various metrics are obtained by image analysis techniques and evaluated. We believe that our measurement and analysis approach can allow rapid identification of growth-prone damage sites, providing a pathway to fast, non-destructive predictions of laser-induced damage growth and enable selective damage site mitigation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-863515
Identifying laser induced damage on the surface of optical components for the purpose of tracking its growth over time and repairing it is an important part of the economical operation of the National Ignition Facility (NIF). Optics installed on NIF are monitored in situ for damage growth and can be removed as needed for repair and re-use. An ex-situ automated microscopy system is used to inspect full sized NIF optics allowing for the detection of damage sites <10 μm in diameter. Due to the various morphology of laser damage, several algorithms are used to analyze the microscopy data and identify damage regardless of size, while ignoring features not related to laser damage. This system has significantly increased the lifetime of NIF final optics (≈2.3x) thereby extending beyond the capabilities of the in-situ inspection by itself.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.