This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Characterization of the cellular response triggered by gold nanoparticle–mediated laser manipulation
In order to provide a reproducible and easy-to-use platform for gold nanoparticle mediated (GNOME) laser manipulation, we established an automated and encased laser setup. We demonstrate its feasibility for high-throughput cell manipulation. In particular, protein delivery into canine cancer cells is shown. The biofunctional modification of cells was investigated using the caspase 3 protein, which represents a central effector molecule in the apoptotic signaling cascade. An efficient and temporally well-defined induction of apoptosis was observed with an early onset 2 h after protein delivery by GNOME laser manipulation. Besides protein delivery, modulation of gene function using GNOME laser transfection of antisense molecules was demonstrated, showing the potential of this technique for basic science and screening purposes.
Concluding, we established GNOME laser manipulation of cells as a routine method, which can be utilized reliably for the efficient delivery of biomolecules. Its intrinsic features, being low impairment of the cell viability, high delivery efficiency and universal applicability, render this method well suited for a large variety of biomedical application.
Applying this approach, a variety of molecules, such as fluorescent dyes, proteins, antisense structures, and DNA, has been transfected in order to manipulate the cellular functions in different experimental settings. Antisense structures, for example, allow the efficient down regulation of the gene activity of a target, providing insights into the gene’s function. The delivery of proteins, as executing molecules in the cell, can exhibit an immediate effect on the cell behavior, allowing a minute observation of the intracellular kinetics.
Direct cell manipulation can be achieved with this approach as well. Increasing the nanoparticle concentration and/or the radiant exposure, effective cell destruction is induced. Using targeted nanoparticles (e.g. by antibody conjugation) in combination with spatially selective laser irradiation permits well-directed cell manipulation even in mixed cultures and potentially in tissues. Furthermore, excited gold nanoparticles can directly trigger cellular reactions, which can possibly be utilized for cell stimulation. The manifold possibilities of nanostructure assisted laser manipulation are still in development.
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
View contact details
No SPIE Account? Create one