Metasurfaces are known as a powerful tool for complex wavefront shaping. However, two-dimensional metasurface systems of nanoparticles exhibit only a weak spatial asymmetry perpendicular to the surface and therefore have mostly reciprocal optical transmission features. To influence this reciprocity, we present a metasurface design principle for nonreciprocal polarization encryption of holograms. Our approach is based on a two-layer plasmonic metasurface design that introduces a local asymmetry and allows full phase and amplitude control of the transmitted light. We experimentally show that our pixel-by-pixel encoded Fourier-hologram appears in a particular linear cross-polarization channel, while it is disappearing in the reverse propagation direction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.