Microelectromechanical Systems (MEMS) Deformable Mirrors (DMs) are a key technology option for adaptive optics instruments for space applications because they provide high-precision wavefront control with small form-factor, low-power devices. The Deformable Mirror Demonstration Mission (DeMi) CubeSat demonstrated a MEMS DM in space for the first time in order to raise the Technology Readiness Level (TRL) of the technology for future space applications such as high-contrast imaging of exoplanets and optical communications. The DeMi payload demonstrated a 140-actuator MEMS DM from Boston Micromachines Corporation. DM performance was measured with a Shack Hartmann wavefront sensor (SHWFS). The DeMi CubeSat began on-orbit operations in July 2020 and has since met the mission goals of measuring individual actuator displacements to a precision of 12 nm and correcting wavefront errors in space to <100 nm RMS error. The DeMi mission has raised the TRL of MEMS DM technology from a 5 to a 9. This paper summarizes the DeMi payload design and the results from over a year of on-orbit operations. Individual actuator measurements from ground and space operations show the MEMS DM actuating in space with similar performance and measurement uncertainty to ground data with no dead or under-actuating actuators detected. Wavefront control experiments show the DeMi payload correcting thermal- and vibration-induced wavefront errors in space.
Microelectromechanical systems (MEMS) deformable mirrors (DMs) can provide high-precision wavefront control with a small form-factor, low power device. This makes them a key technology option for future space telescopes requiring adaptive optics for high-contrast imaging of exoplanets with a coronagraph instrument. The Deformable Mirror Demonstration Mission (DeMi) CubeSat payload is a miniature space telescope designed to demonstrate MEMS DM technology in space for the first time. The DeMi payload contains a 50-mm primary mirror, an internal calibration laser source, a 140-actuator MEMS DM from Boston Micromachines Corporation, an image plane wavefront sensor, and a Shack–Hartmann wavefront sensor (SHWFS). The key DeMi payload requirements are to measure individual actuator wavefront displacement contributions to a precision of 12 nm and correct both static and dynamic wavefront errors in space to less than 100-nm RMS error. The DeMi mission will raise the technology readiness level of MEMS DM technology from a five to at least a seven for future space telescope applications. We summarize the DeMi optical payload design, calibration, optical diffraction model, alignment, integration, environmental testing, and preliminary data from in-space operations. Ground testing data show that the DeMi SHWFS can measure individual actuator deflections on the MEMS DM to within 10 nm of interferometric calibration measurements and can meet the 12-nm precision mission requirement for actuator deflection voltages between 0 and 120 V. Payload data from throughout environmental testing show that the MEMS DM and DeMi payload survived environmental testing and provides a valuable baseline to compare with space data. Initial data from space operations show the MEMS DM actuating in space with a median agreement between individual actuator measurements from space and equivalent ground testing data of 12 nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.