Fourier Transform Spectrographs (FTS) are versatile tools for measuring accurate, high resolution spectra. They are internally calibrated by a reference laser that runs in parallel to the science light. Therefore it is crucial to properly align these two beams with respect to each other. We show how this can be achieved by feeding a part of the reference light into the optical path of the science beam. For astronomical applications it’s often useful to use optical fibers. We present a coupling setup for our Bruker Optics IFS 125 FTS, consisting of (1) two hexagonal input fibers, (2) dichroic beam-combining for measuring two light sources simultaneously and (3) optimized optics to match the original Bruker design. The hexagonal shape of the fiber cores secures sufficient mode scrambling inside the fibers, resulting in constant beam parameters and a more homogeneous illumination of the entrance aperture of the FTS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.