Triggered by the need for arrays of individually resolvable excitation foci or trapping potentials in photonics applications, coherent lattice theory describes a unique approach to design structured interference patterns. Typically, large periodicity lattices remain unexplored due to limitations in the theoretical description. Here, we present a method for efficient computation of coherent lattices, successfully covering all periodic and quasi-periodic lattices. The previously unrelated moiré theory and prime number factorization are the foundation of the proposed method. Additionally, we experimentally verify key optical coherent lattices and propose broadening their applicability towards structured light microscopy and optical trapping using photonic integrated circuits.
Fluorescence microscopy is an indispensable tool in biology and medicine, fuelling many breakthrough discoveries in a wide set of sub-domains. Yet, the resolution is intrinsically restricted by the diffraction limit. The last two decades have witnessed the emergence of several super-resolution fluorescence microscopy techniques that are breaking this limit (cfr. Nobel Prize in Chemistry 2014). Structured illumination microscopy (SIM) is one of such techniques that has gained much popularity and is available in commercial systems. In SIM, a biological sample is illuminated by a spatially structured light field — a sinusoidal interference pattern — which causes normally inaccessible high-resolution information to be encoded into the observed image due to the Moiré effect. Typically, the illumination patterns are generated by a grating or SLM and focused onto the sample through an objective lens to excite the fluorophores. Next, the fluorescence is transmitted to the imager through the same lens. Multiple images are taken under certain illumination patterns and used to reconstruct a single super-resolved image. However, making use of free space optics, state-of-the-art SIM systems require multiple bulky and precision optical components that give these systems the drawbacks of high cost and cumbersome size.
In this talk, a structured illumination microscopy system based on a photonic integrated circuit (PIC) is presented. The unique properties of photonic integrated circuits allow us to create truly innovative microscopy systems that have the potential to go well beyond the current state-of-the-art: higher resolution due to the use of high refractive index materials, easier alignment with on-chip illumination light path, large field of view, a compact form factor resulting from on-chip integration, and lower cost due to compatibility with CMOS chip fabrication.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.