Our article “Optical system for extremely large spectroscopic survey telescope” has been accepted on December 26, 2023, published online on March 7, 2024, and will be published in July 2024 Vol. 67 No. 7: 279511 in Sci. China-Phys. Mech. Astron. In this article, a pure reflecting optical system with a novel strip lensm (lens-prism) atmospheric dispersion corrector (S-ADC) is used, breaking through the glass material size limit of the lens atmospheric dispersion corrector, making possibility to have an aperture of 16 meters and a field of view 2.5 degrees for the spectral survey telescope. This paper gives a brief introduction to the previous article first, and then presents the progress of four important issues that were not discussed in depth in the previous article: (1) The study of Integrated Field Unit (IFU) observation of the galaxy extended sources in coudé focus; (2) The support structure and fabrication test of S-ADC; (3) A new special method of optical fiber positioning unit to resolve the problem of chief ray not perpendicular to the focal plane. (4) The preliminary telescope structure. Finally, this paper proposes to develop a spectroscopic survey telescope with a diameter of 14.5 meters. Its Nasmyth focus with a focal ratio of 4 or 3.5, a field of view diameter of 2.5 degrees (or 2 degrees), equipped with about 50,000 optical fibers, is mainly used for spectral survey of point sources. The coudé focus is used for integrated field spectral observation of extended sources (galaxies, etc.) with 4 arc-minutes and 2 arc-minutes field of view in diameter, equipped with about 50,000 or even more optical fibers. We refer to this Telescope simply as ESST (Extremely large Spectroscopic Survey Telescope).
Space telescopes, free from atmospheric disturbances, possess higher resolution, making them a focal point of research in the scientific community. However, during the launch of space telescopes, vibrations can cause irreversible damage to the primary mirror. Passive damping methods are more effective in reducing high-frequency vibrations but less so for lowfrequency vibrations. In order to effectively suppress the transmission of low-frequency vibrations, this study designs an active vibration reduction system for space telescopes, tests the relevant performance of the system's key component - the permanent magnet spring-driven actuator, and evaluates the vibration reduction effect of the active vibration reduction system. The results indicate that after the introduction of the active vibration reduction system, the amplitude of lowfrequency vibrations in the experimental system decreases by 49.4% to 56.1%.
The Multi-channel Photometric Survey Telescope (Mephisto) is a wide-field ground based telescope with a 1.6m primary mirror and 2° field of view, proposed by Yunnan University. The telescope will be capable of imaging the northern sky in three colors simultaneously and deliver a colored movie of the universe. The R-C system with lens corrector was adopted as the optical system considering of the image quality requirement, light obscuration and camera arrangement, in which three cubic splitters were adopted for the three channel beams in order to get satisfied image quality over the whole field of view. Dichroic coating on the cubic will lead to nonuniform efficiency on the focal plane due to the polarization problem and wide incident angle, which need calibration. The image quality represented in 80% encircled light energy is around 0.6arcsec. In order to keep the optimal image quality in any operational conditions, a 5-DOF mechanism was designed to actively adjust M2 mirror positions according to the wavefront sensors or by direct star psf. Now the telescope are under developing in Nanjing, expected to be installed at Lijiang observatory before the end of 2021.
SONG (Stellar Oscillation Network Group) is an international project to form a global observing network of eight 1- meter class telescopes. China joined this project and funded one node telescope for this network. By the end of 2013, the Chinese SONG telescope has been installed on the Delinha observing site of Purple Mountain Observatory in Qinghai province. This paper will give the introduction of this telescope, including its optical system, structure and control system. Besides, the preliminary observing performance of the telescope on site will be given in the second part of this paper.
SONG is an international initiative to design, build, and utilize a global network of eight 1-meter class
telescopes to be operated as a whole-Earth telescope. The telescope is composed of system of azimuth axis, rotating
table, fork, system of elevation axis, top-ring, up and down truss, system of primary mirror and so on. For an
astronomical telescope mount, having a high stiffness to support the mirror cell and instruments is its basic function.
Finite element method (FEM) is a powerful tool to help structure design engineer to achieve this goal. In this paper, with
the help of ANSYS, the static and modal analysis, calculation and optimization of the SONG telescope mount will be
given. The modal result which is used for avoiding resonance and fatigue failure of the telescope acquire natural
frequency of telescope. The FEM results show that the structure, designed for SONG telescope, is feasible and reliable
and have a high stiffness-to-weight ratio to meet the optical demands.
The standard SONG node structure of control system is presented. The active optical control system of the project is a
distributed system, and a host computer and a slave intelligent controller are included. The host control computer collects
the information from wave front sensor and sends commands to the slave computer to realize a closed loop model. For
intelligent controller, a programmable logic controller (PLC) system is used. This system combines with industrial
personal computer (IPC) and PLC to make up a control system with powerful and reliable.
Active support scheme may decide the deformation of the optical surface figure of the primary mirror. Two active
support schemes have been designed for 1-m primary mirror, and the performance of each support scheme is conducted.
Finite element analysis (FEA) is employed to analyze the optical surface figures of the primary mirror, and optimizations
are carried out by using ANSYS for each support scheme to obtain the locations of the axial support. When the locations
are determined, axial support force sensitivities are calculated for the two support schemes in a case that a single axial
support has a force error of 0.5N. The correction ability of the active support system for both of support schemes are
analyzed when an arbitrary axial support is failure. Several low order Zernike modes are modeled with MATLAB
procedure, and active optics corrections are applied to these modes for the two active supports. Thermal deformation of
the mirror is also corrected for the two schemes.
SONG is initiated by Danish to design, build, and utilize a global network of eight 1-meter class telescopes to be
operated as a whole-Earth telescope. China has joined the international SONG project in 2009 and will build one 1-meter
telescope as the node of SONG global network in China. Now the telescope is during the period of building. This paper
will give an introduction of Chinese SONG telescope, including telescope requirements, telescope design and other
information.
KEYWORDS: Telescopes, Mirrors, Control systems, Computer programming, Astronomical imaging, Optical instrument design, Control systems design, Astronomy, Astronomical telescopes, Information technology
Telescope is a very important tool for astronomers to survey and study the stellar stars and astronomical phenomena. The
performance of a telescope is its capability to track the observing objects and keep the image on the field of view during
the observing period. All these functions will be achieved by telescope mount, including mount control system. The
mount is to support the mirror cell and keep the mirror cell position stability. Meanwhile, with the help of control
system, the mount acts as tracker of the observing objects. So, for a telescope, the mount and its control system play an
important role during the telescope operation. This paper gives an introduction of a mount structure designed for a 2.5m
optical/infrared telescope and the corresponding control system. Some of preliminary test results are also given in this
paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.