In this paper, a readout circuit (ROIC) utilizing a novel noise tolerant edge detection technique for InSb medium wavelength infrared focal plane arrays (MWIR FPAs) is studied. The use of a noise tolerant edge detection algorithm eliminates the need for a pixel-level non-uniformity correction circuit. In addition, the proposed circuit's simple structure allows the processing circuits to be integrated within a shared 2 by 2 pixel area. The proposed method shows better performance for the Gaussian and salt & pepper noise than other conventional approaches. A good edge map is obtained in general InSb MWIR detectors which have 99.5% operability and about 5% non-uniformity of the pixel current. Basic operation of the fabricated noise tolerant edge detection circuit is demonstrated.
We have developed a microbolometer readout integrated circuit (ROIC) that corrects the non-uniformity in analog operation and acts in both normal mode and edge detection mode. A capacitive transimpedance amplifier (CTIA) has been employed as the input circuit of the microbolometer. Generally, when fabricating microbolometer focal plane arrays (FPAs), offset-error and gain-error in the inter-microbolometer are induced by fabrication error. They are shown as fixed pattern noise (FPN) in the infrared image. In the present study, a circuit correcting the offset-error and the gain-error in the normal mode by controlling the bias and the integration capacitance of the CTIA is proposed. This circuit does not require an additional DSP chip, and the non-uniformity is corrected before the analog to digital conversion (ADC). Thus, it can utilize 3-4 bits lower ADC compared to the conventional readout circuit. In the edge detection mode, after correcting the gain-error in two adjacent pixels, edge detection can be realized by subtracting their signal without the DSP. We have designed the suggested circuit to output a 10bit level effective infrared signal using 0.35um 2-poly 3-metal CMOS technology.
In this paper, a readout technique involving current mode background suppression is studied for 2-dimensional infrared focal plane arrays (IR FPA’s). This technique has a current memory per pixel, and the suppression current can be optimized per pixel element. Capacitive transimpedende amplifier (CTIA) and feedback amplifier structure are adopted for input circuit and background suppression circuit, respectively. Feedback amplifier structure can minimize skimming error due to channel length modulation. The area size of the pixel circuit is generally limited in the case of 2-D application. So, the amplifier used in the CTIA input circuit adopts timesharing for background suppression. To further improve the area limitation, a half circuit of the CTIA is shared in row circuit out of the pixel array. Because of the leakage of the current memory, the skimming data of the current memory in the pixel array is stored in SRAM array through ADC, and is refreshed periodically with SRAM data through DAC.
The readout circuit was fabricated using 0.6um 2-poly 3-metal CMOS process for 64 x 64 LWIR HgCdTe IR array with the pixel size of 50um x 50um. The measurement performance of the skimming circuit exhibits about only 3% error for 100nA background current. The simulation results exhibit that skimming error can be reduced further to 0.3% when the ratioed current mirror scheme and/or multi step refresh scheme is adopted.
Transferring the image information in analog form between the FPA and the external electronics causes the disturbance of the outside noise. On-chip A/D converter into the readout circuit (ROIC) can eliminate the possibilities of the cross-talk of noise. Also, the information can be transported more efficiently in power in the digital domain compared to the analog domain. In designing on-chip A/D converter for cooled type high density infrared detector array, the most stringent requirements are power dissipation, number of bits, die area and throughput. In this study, pipelined type A/D converter was adopted because it has high operation speed characteristics with medium power consumption. Capacitor averaging technique and digital error correction for high resolution was used to eliminate the error which is brought out from the device mismatch. The readout circuit was fabricated using 0.6μm CMOS process for 128 x 128 mid-wavelength infrared (MWIR) HgCdTe detector array. Fabricated circuit used direct injection type for input stage, and then S/N ratio could be maximized with increasing the integration capacitor. The measured performance of the 14 b A/D converter exhibited 0.2 LSB differential non-linearity (DNL) and 4LSB integral non-linearity (INL). A/D converter had a 1 MHz operation speed with 100mW power dissipation at 5V. It took the die area of 5.6 mm2. It showed the good performance that can apply for cooled type high density infrared detector array.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.