This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Enabling rapid and high-quality 3D scene reconstruction in cystoscopy through neural radiance fields
Methods: Chan-Vese algorithm, an active contour model, is used to segment high-risk regions in fluorescence videos. A semi-implicit gradient descent method was applied to minimize the energy function of this algorithm and evolve the segmentation. The surrounding background was then identified using morphology operation. The average T/B ratio was computed and regions of interest were highlighted based on user-selected thresholding. Evaluation was conducted on 50 fluorescence videos acquired from clinical video recordings using a custom multimodal endoscope.
Results: With a processing speed of 2 fps on a laptop computer, we obtained accurate segmentation of high-risk regions examined by experts. For each case, the clinical user could optimize target boundary by changing the penalty on area inside the contour.
Conclusion: Automatic and real-time procedure of calculating T/B ratio and identifying high-risk regions of early esophageal cancer was developed. Future work will increase processing speed to <5 fps, refine the clinical interface, and apply to additional GI cancers and fluorescence peptides.
Toward real-time endoscopically-guided robotic navigation based on a 3D virtual surgical field model
To test this system, synthetic phantoms of debulked tumor from brain are fabricated having spots of fluorescence representing residual tumor. Three-dimension (3D) surface maps of this surgical field are produced by moving the SFE over the phantom during concurrent reflectance and fluorescence imaging (30Hz video). SIFT-based feature matching between reflectance images is implemented to select a subset of key frames, which are reconstructed in 3D by bundle adjustment. The resultant reconstruction yields a multimodal 3D map of the tumor region that can improve visualization and robotic path planning.
Efficiency of creating these maps is important as they are generated multiple times during tumor margin clean-up. By using pre-programmed vector motions of the robot arm holding the SFE, the computer vision algorithms are optimized for efficiency by reducing search times. Preliminary results indicate that the time for creating these 3D multimodal maps of the surgical field can be reduced to one third by using known trajectories of the surgical robot moving the image-guided tool.
View contact details
No SPIE Account? Create one