Machine learning techniques such as convolutional neural networks have progressed rapidly in the past few years, propelled by their rampant success in many areas. Convolutional networks work by transforming input images into compact representations that cluster well with the representations of related images. However, these representations are often not human-interpretable, which is unsatisfying. One field of research, image saliency, attempts to show where in an image a trained network is looking to obtain its information. With this method, well-trained networks will reveal a focus on the object matching the label and ignore the background or other objects. We train and test neural networks on synthetic SAR imagery and use image saliency techniques to investigate the areas of the image on which the network is focused. Doing so should reveal whether the network is using relevant information in the image, such as the shape of the target. We test various image saliency techniques and classification networks, then measure and comment on the resulting saliency results to gain insight into what the networks learn on simulated SAR data. This investigation is designed to serve as a tool for evaluating future SAR target recognition machine learning algorithms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.