KEYWORDS: Sensors, Structural health monitoring, Graphene, Aerospace engineering, Structural dynamics, Composites, Matrices, Viscosity, Signal to noise ratio, Signal detection
Structural Health Monitoring appears to be among the few possible strategies in order to reduce maintenance costs and weights of aerospace composite structures by sensorising structures employing secondary bonded or embedded sensors and condition monitoring strategies. Within an SHM global strategy sensors can be employed to detect damaging events (i.e. impacts) or to verify the health status by acquiring signals related to waves traveling into structures. Piezoresistive sensors based on nanotubes or graphene like particles dispersed into a polymer or any other matrix have been developed and characterized during latest years since they present the advantages of easy application and low weight addiction to the primary structure as well as low costs and high integration potentialities. Their sensitivity and gauge factors can vary a lot depending on the percentage of graphene material dispersion, from the matrix type and viscosity, from the dimensions of the sensor and from its shape. This work presents the preliminary results related to new typologies of sensors obtained by melt polystyrene compounding with different amounts of graphene nanoplatelets combined with carbon nanotubes.
Composite structures widely used in advanced sectors as in the automotive and aeronautical fields, during their useful life are usually subject to dynamic events responsible for apparently invisible failures which, over time, severely compromise their performance. In this regard, a huge amount of experimental results, also validated by theoretical considerations, is available on the behaviour to damage caused by low velocity impacts (LVI) on laminate systems in polymeric composite and on their residual strength. However, until now the research interest has been mainly focused on thin composite laminates (less than 4 mm) and only very few experimental works are available concerning thick laminates (thickness higher than 4 mm) generally used in the skin of airplane wings, stringers, highly loaded components. This study aims to investigate simulated defects in carbon fiber reinforced polymers (CFRP) and of the damage deriving from LVI events, particularly peculiar to structures with higher bending stiffness such as thick ones and, therefore, to fill the current knowledge gap for a more appropriate use of the latter. To this end, thick carbon epoxy resin composite laminates, kindly supplied by Leonardo SpA and impacted at the Department of Industrial Engineering of the University of Naples Federico II, will be systematically investigated with well-established skills on infrared thermography, air coupled ultrasonic tests and shearography at the Institute of Applied Science and Intelligent Systems of the National Research Council. The combined results for both panels with simulated defects and impacted panels provided an accurate description of the different defects present in the thick panels involved in their damage process.
Composite honeycomb sandwich samples are commonly used because they offer a high strength-to-weight ratio, making them ideal for lightweight and durable structures. However, ensuring their structural integrity is essential for safety and performance. Multimodal NDT (Non-Destructive Testing) inspection and characterization of composite honeycomb sandwich samples is a critical process in various industries, including aerospace, automotive, and civil engineering. The use of NDT techniques makes it possible to verify the quality of the composite material and identify any defects. In this context, we provide a comparison of several techniques as nondestructive methods on a sample of interest to the aerospace industry and evaluates the parameters of their use: shearography, infrared thermography and laser ultrasonic. Using non-destructive testing techniques, it is possible to check the quality of composite materials and identify any programmed flaws. These techniques allow for frequent inspections without compromising the integrity of the material. This helps ensure the safety and reliability of products using composite materials. From the preliminary results it is evident that the combined use of the described non-destructive testing (NDT) techniques can significantly improve the reliability and accuracy of the quality control process for a wide variety of materials and defects.
Performances are a key concern in aerospace vehicles, requiring safer structures with as little consumption as possible. Composite materials replaced aluminum alloys even in primary structures to achieve higher performances with lighter components. However, random events such as low-velocity impacts may induce damages that are typically more dangerous and mostly not visible than in metals. Structural health monitoring deals mainly with sensorised structures providing signals related to their “health status” aiming at lower maintenance costs and weights of aircrafts. Much effort has been spent during last years on analysis techniques for evaluating metrics correlated to damages’ existence, location and extensions from signals provided by the sensors networks. Deep learning techniques can be a very powerful instrument for signals patterns reconstruction and selection but require the availability of consistent amount of both healthy and damaged structural configuration experimental datasets, with high materials and testing costs, or data reproduced by validated numerical simulations. Within this work will be presented two supervised deep neural networks trained by experimental measurements as well as numerically generated strain propagation signals. The final scope is the detection of delaminations into composites plates for aerospace employ. The first type is based directly on the processing trough a convolutional autoencoder of the rough signals of both healthy and damaged structural configurations. The second approach is instead based on the production of images trough signal processing techniques and on employ of an image recognition convolutional network. Both networks are trained and tested on combinations of experimental and numerical data.
From airplane wings to overhead power lines, through large blades of wind turbines, a buildup of ice can cause problems ranging from low performance to catastrophic failure. Therefore, it is of the utmost importance to control or prevent ice formation, especially on the critical areas of the structures. However, de-icing and anti-icing countermeasures can result energetically expensive and harmful to the environment. In addition, excessive use thereof will reduce the life of an ice protection system (IPS) and introduce fatigue to the controlled structures. Therefore, in order to manage properly the available resources, it is desirable to have an IPS that can both detect ice formation and monitor the ice thickness on critical surfaces. This would allow the IPS to operate when it is necessary. Ultrasonic guided-wave-based techniques have proved to be reliable for ice detection but approaches to assess ice state over time have not been reported yet. The present work investigates the interaction of ultrasonic waves, propagating in a composite plate, with an ice mass changing state, as it melts. The use of a metric is discussed as indicator of ice condition variation.
Structural Health Monitoring deals mainly with sensorized structures where sensors can be secondary bonded on metallic or composite structural elements. Aerospace structural design must account for Damage Tolerance (DT) of structures. To accomplish the airworthiness, a flawed structure is required to stand the design load without any growth and, eventually, repaired. For metallic materials, the damage tolerance approaches are well-established and rely on the evaluation (theoretically and experimentally) of crack propagation velocity. For composite structures the damage-tolerance design is more challenging as the failures that may occur are of different type, most of the times hidden inside the structure and can grow up to a critical size before the conventional inspection techniques detect them. Within the DT approach one of the showstoppers for the full implementation of adhesive bonds in composites (i.e. stringer-skin connections for stiffened plates) are the airworthiness certification requirements for composite aircraft structures as presented within the FAA Advisory Circular 20-107B. In that document the general methods for substantiating the limit load capacity of any bonded stiffener, the failure of which would result in catastrophic loss of the airplane, are prescribed. Among the suggested methods, the only one really permitting to achieve the optimal bonding efficiency without the addiction of disbond stoppers (i.e. rivets), is a “repeatable and reliable non-destructive inspection techniques ensuring the strength of each joint”. That assumption implies the implementation of a reliable SHM system capable of monitoring the extent of an eventual disbond until it reaches a critical dimension at limit load. This paper will present the preliminary results of a research activity where the authors apply static loads to a stiffened plate made of a skin and a bonded stringer (co-infused) where a disbond “starter” has been included during manufacturing. The plate has been sensorized with a strain gauge system to detect the disbonding evolution during load application, in order to verify the effectiveness within a DT approach.
KEYWORDS: Composites, Wave propagation, Finite element methods, Neural networks, Sensors, Structural health monitoring, Signal generators, Signal analysis, Sensor networks, Safety
Structural Health Monitoring (SHM) deals mainly with structures instrumented by secondary bonded or embedded sensors that, acting as both signal generators and receivers, are able to “interrogate” the structure about its “health status”. Sensorised structures appear promising for reducing the maintenance costs and the weight of aerospace composite structures, without any reduction of the safety level required. Much effort has been spent during last years on signal analysis techniques in order to extract from signals provided by the sensors networks many parameters, metrics, and images correlated to damages existence, location and extensions. As in many other technological fields, like medical image diagnostics, deep learning techniques in general and artificial neural networks in particular can be a very powerful instrument for damage patterns reconstruction and selection provided that a sufficient and consistent amount of data related to healthy and damaged configuration of the item under test are available. Within this work explicit finite element analysis has been employed to simulate waves propagation within composite plates with and without delaminations due to impacts. The numerical results have been previously validated with analytical solutions and experimental signals then have been used to populate the data sets necessary for deep learning. This paper will present the preliminary results achieved by the authors.
Modern aerospace structures demand lightweight design procedures and require scheduled maintenance intervals. Supervised deep learning strategies can allow reliable damage detection provided a large amount of data is available to train. These learning algorithms may face problems in the absence of possible damage scenarios in the training dataset. This class imbalance problem in supervised deep learning may curtail the learning process and can possess issues related to generalization on unseen examples. On the other hand, unsupervised deep learning algorithms like autoencoders can handle such situations in the absence of labeled data. In this study, an aerospace composite panel is interrogated with a circular array of piezoelectric transducers using ultrasonic guided waves in a round-robin fashion. The time-series signals are collected for both the healthy and unhealthy state of the structure and transformed into a time-frequency dataset using continuous wavelet transformation. A convolutional autoencoder algorithm trained on healthy signals is used to identify anomalies in the form of delamination in the structure. The proposed methodology can successfully identify delamination in the structure with good accuracy.
Adhesive junctions or co-infusion of skin and stiffeners represent efficient manufacturing processes for aircrafts composites stiffened panels leading to weight saving, although they have not been widely adopted yet due to certification issues and the lack of well-established design tools and procedures. Airworthiness requirements for composite structures pose major challenges to the certification of adhesively bonded or co-infused stiffened structures. FAA Advisory Circular 20-107B prescribes the methods for substantiating the limit load capacity of any bonded stiffener, the failure of which would result in catastrophic loss of the airplane. Today, composites primary structures that work mostly under compressive loads are designed following the no-buckling criteria up to Ultimate Load. Such a design approach leads to stiffer and heavier structures if compared to letting the compressed skins work in post-buckling until failure. In order to exploit the full structural potentiality of this type of structures under compressive loads new design approaches, mostly based on Finite Element Modelling, have to be developed and validated with experimental results to correctly predict the nonlinear mechanisms of load absorption beyond skin buckling onset. Furthermore state-of-the art Non-Destructive- Techniques and Structural Health Monitoring Systems can be employed for a continuous monitoring of the joints health status. In this context, the joining technique of the stringers to the skin has a particular importance; indeed, although different joining processes barely influence the linear behavior of a stiffened plate until its first instability load, they are responsible for relevant differences in the ultimate failure load. This paper presents numerical and experimental activities carried out to study the behavior of compressed stiffened plates obtained by different manufacturing processes as well as monitoring techniques of the health status of the panels by classical NDT and guided waves based SHM systems. The numerical problem has been modelled with approaches of increasing complexity, from “classical” FE models to predict the first buckling load, to post-buckling analyses up to more refined techniques including the behavior of the skin-stiffener interface.
Sensorised structures aimed at Structural Health Monitoring implementation in aircraft components are among the most promising approaches for a next future evolution of the current maintenance procedures (and consequently for operative costs reduction) but also for relevant modifications of design rules and manufacturing processes. Adhesive bonds represent an efficient manufacturing process for composite structural parts due to the possibility to co-bond or co-cure together thin plates and stiffeners leading to weight saving, although they have not been massively employed yet. One of the showstoppers for the full implementation of adhesive bonds in composites are the airworthiness certification requirements for composite aircraft structures as presented within the FAA Advisory Circular 20-107B. In that document the general methods for substantiating the limit load capacity of any bonded stiffener, the failure of which would result in catastrophic loss of the airplane, are prescribed. Among the suggested methods, the only one really permitting to achieve the optimal bonding efficiency without the addiction of disbond stoppers (i.e. rivets), is a “repeatable and reliable non-destructive inspection techniques ensuring the strength of each joint”. This paper presents experimental activities that the authors have carried out to characterize two stiffened plates that are “nominally” equal, but obtained by different manufacturing processes; the two plates have been statically characterized performing strength tests, inspected by traditional NDI (ultrasonic C-Scan) and implementing a guided waves based SHM system designed for stringer debonding detection and characterization. A critical analysis of the experimental results as well as a comparison with the expected nominal structural performances will be presented. Afterward a comparison of the three approaches adopted for structural health status characterization before and after stiffener disbonding will be presented looking at the possible implementation of a SHM system committed at satisfying the certification requirements of the AC 20-107B.
Secondary bonded or embedded sensors are usually adopted in Structural Health Monitoring of composite structures. Each type of sensor has advantages and drawbacks when used separately although their proper integrated combination may improve the overall performance of a SHM system. The aim of the present work is to evaluate the feasibility of an efficient hybrid SHM system able to sense and locate low velocity impacts and to localize eventual impact damages at their early stage with few sensors. A CFRP panel demonstrator with embedded FBGs has been fabricated by NOVOTECH srl through an advanced out-of-autoclave manufacturing process based on the following main phases: production of dry preforms laid down with a laser assisted automated fiber placement robot (AFP); insertion of the FBGs network within the stack of the preform according to the design requirements; high temperature liquid resin infusion process. Disk shaped piezo patches (PZT) are then secondary bonded to the panel. First, an impact sensing mode is enabled resorting to both PZTs and FBGs as receivers, gathering strain waves from the impact location. A material independent technique, that needs neither a priori knowledge of the material properties even for anisotropic plates nor a dense array of sensors, will be used to locate the impact. To assess the integrity of the panel after impact localization, the damage location mode is then performed using the most effective sensors, where the selection of these sensors is possible thanks to the knowledge of the impact location carried out in the previous mentioned impact sensing mode. The damage localization technique is based on guided waves generated by PZTs and sensed by both PZTs and FBGs. Again, thanks to the knowledge of the impact location, a reduced number of PZTs is selected to perform the damage localization. The main advantage of the proposed technique is the capability to sense impact events and to activate the damage localization mode only when required. Moreover, by the knowledge of the impact location, only a few sensors (sources and receivers) need to be used in favor a reduced number of acquisition channels required and acquisition data to be managed.
Structural Health Monitoring deals mainly with structures instrumented by secondary bonded or embedded sensors. Sensors, acting passively or actively as both signal generators and receivers, are able to “listen” to any event happening in the structure (passive SHM) and to “interrogate” the structure to check its “health status” (active SHM). Structures embedded with sensors appear promising for reducing the maintenance costs and the weight of aerospace composite structures, without any reduction of the safety level required. Among many actuators/sensors technologies under investigation for active SHM systems, the combination of piezoelectric patches employed as guided wave exciters or impact sensors and optical fiber Bragg gratings (FBG) as stress wave detectors look promising for their distributed sensing capability as well as weight reduction compromise in a so-called “hybrid structural component”. FBGs have been employed only recently as stress ultrasonic wave sensors due to the reduced number of high-frequency optical interrogators available. One such device, a multi-channel fiber optic acoustic emission (FAESense™) system developed by Redondo Optics, has been employed by the authors for this purpose. Hybrid SHM systems employing FBGs as sensor arrays could provide more distributed data about the local integrity of the structure with less weight addition compared to other sensor types. Typical diameter of fiber optics could allow the embedding of sensor arrays within the composite laminate. Finally, FBGS can provide simultaneously high frequency data characterizing guided wave propagation as well as low frequency local deformations permitting an SHM approach combining global and local impact and damage detection. Intent of this paper is to summarize the first experience gained by the authors in developing SHM systems for composite plate-like hybrid structures for impact detection.
The paper presents a preliminary study about a de-icing system using ultrasonic waves. The activity has been developed within the project “SMart On-Board Systems” (SMOS), which is part of Italian Aerospace National Research Program, funded by the Italian Ministry of Education and Research and coordinated by CIRA. Conceived for an aircraft wing leading edge, the system shall be extended to other aircraft components, once its efficiency and reliability will be demonstrated. Herein, the results of a preliminary numerical work on a NACA 0012 profile are presented. Guided waves are generated by a piezoelectric transducer bonded on the structure and they cause shear stresses that induce ice delamination and fracture. The investigation is focused on the selection of most suitable excitation frequency for the actuator. Finite element analyses are performed to demonstrate the effectiveness of this approach.
Lamb waves propagating in thin plates and shells are being widely studied for their potential applications in nondestructive inspection of large-scale structures. These structures are generally characterized by the presence of geometrical discontinuities such as stiffeners, mechanical joints or variable thicknesses that affect the propagation characteristics of Lamb waves that can be very similar to those from defects occurring in service (delamination, disbond, etc.). Therefore, the knowledge of the effects of such discontinuities on the propagation of guided waves is essential to avoid their false identification as defects. In this work Lamb waves propagating in a metal plate with a downward step are studied through laboratory experiments. A single 10 mm piezoceramic disk (PZT) bonded to the host structure using cyanoacrylate gage adhesive is utilized for Lamb waves generation and the responses are measured at multiple locations, along a line crossing the step, using a scanning laser Doppler vibrometer (LDV). The interaction of the fundamental Lamb mode A0 with the geometrical discontinuity in the isotropic plate is investigated and discussed.
Structural Health Monitoring deals mainly with structures instrumented by secondary bonded or embedded sensors that, acting as both signal generators and receivers, are able to “interrogate” the structure about its “health status”. This innovative approach to the damage analysis is particularly promising for reducing the maintenance costs and eventually the weight of aerospace composite structures, without any reduction of the safety level required. These structures are currently designed and employed with significant reduction of the pristine material allowables to account certain failure mechanisms frequently inducing relatively small hidden damages called Barely Visible Damages, consisting among others in delaminations and/or debondings and being detectable only by specific instruments operated by trained personnel. It has been proved that the propagation of guided waves is affected by the presence of such type of damages, but their effective identification and localization depends on the accurate “tuning” of the wave characteristic (frequency, amplitude, velocity, mode) as well as on the proper selection of the best parameter of the specific wave mode selected and data analysis algorithm. The intent of this paper is to summarize the experiences gained by the authors in selecting the most sensitive parameters according to the type of damage to be investigated in several typology composite plate-like structures.
KEYWORDS: Structural health monitoring, Waveguides, Composites, Nondestructive evaluation, Damage detection, Signal analysis, Signal detection, Wave propagation, Statistical analysis, Algorithm development
A full-scale lower wing panel made of composite material has been designed, manufactured and sensorised within the European Funded research project named SARISTU. The authors contributed to the whole development of the system, from design to implementation as well as to the impacts campaign phase where Barely Visible and Visible Damages (BVID and VID) are to be artificially induced on the panel by a pneumatic impact machine. This work summarise part of the experimental results related to damages production, their assessment by C-SCAN as reference NDT method as well as damage detection of delimitations by a guided waves based SHM. The SHM system is made by customized piezoelectric patches secondary bonded on the wing plate acting both as guided waves sources and receivers. The paper will deal mostly with the experimental impact campaign and the signal analyses carried out to extract the metrics more sensitive to damages induced. Image reconstruction of the damages dimensions and shapes will be also described based mostly on the combination of metrics maps over the plate partial surfaces. Finally a comparison of damages maps obtained by the SHM approach and those obtained by “classic” C-SCAN will be presented analyzing briefly pros and cons of the two different approached as a combination to the most effective structural maintenance scenario of a commercial aircraft.
Guided wave (GW) Structural Health Monitoring (SHM) allows to assess the health of aerostructures thanks to the great sensitivity to delamination and/or debondings appearance. Due to the several complexities affecting wave propagation in composites, an efficient GW SHM system requires its effective quantification associated to a rigorous statistical evaluation procedure. Probability of Detection (POD) approach is a commonly accepted measurement method to quantify NDI results and it can be effectively extended to an SHM context. However, it requires a very complex setup arrangement and many coupons. When a rigorous correlation with measurements is adopted, Model Assisted POD (MAPOD) is an efficient alternative to classic methods. This paper is concerned with the identification of small emerging delaminations in composite structural components. An ultrasonic GW tomography focused to impact damage detection in composite plate-like structures recently developed by authors is investigated, getting the bases for a more complex MAPOD analysis. Experimental tests carried out on a typical wing composite structure demonstrated the effectiveness of modeling approach in order to detect damages with the tomographic algorithm. Environmental disturbances, which affect signal waveforms and consequently damage detection, are considered simulating a mathematical noise in the modeling stage. A statistical method is used for an effective making decision procedure. A Damage Index approach is implemented as metric to interpret the signals collected from a distributed sensor network and a subsequent graphic interpolation is carried out to reconstruct the damage appearance. A model validation and first reliability assessment results are provided, in view of performance system quantification and its optimization as well.
Structural health monitoring (SHM) based on guided waves allows assessing the health of a structure due to the sensitivity to the occurrence of delamination. However, wave propagation presents several complexities for effective damage identification in composite structures. An efficient implementation of a guided wave-based SHM system requires an accurate analysis of collected data to obtain a useful detection. This paper is concerned with the identification of small emerging delaminations in composite structural components using a sparse array of surface ultrasonic transducers. An ultrasonic-guided wave tomography technique focused on impact damage detection in composite plate-like structures is presented. A statistical damage index approach is adopted to interpret the recorded signals, and a subsequent graphic interpolation is implemented to reconstruct the damage appearance. Experimental tests carried out on a typical composite structure demonstrated the effectiveness of the developed technique with the aim to investigate the presence and location of damage using simple imaging reports and a limited number of measurements. A traditional ultrasonic inspection (C-scan) is used to assess the methodology.
Maintenance approaches based on sensorised structures and Structural Health Monitoring systems could represent one of the most promising innovations in the fields of aerostructures since many years, mostly when composites materials (fibers reinforced resins) are considered. Layered materials still suffer today of drastic reductions of maximum allowable stress values during the design phase as well as of costly and recurrent inspections during the life cycle phase that don't permit of completely exploit their structural and economic potentialities in today aircrafts. Those penalizing measures are necessary mainly to consider the presence of undetected hidden flaws within the layered sequence (delaminations) or in bonded areas (partial disbonding); in order to relax design and maintenance constraints a system based on sensors permanently installed on the structure to detect and locate eventual flaws can be considered (SHM system) once its effectiveness and reliability will be statistically demonstrated via a rigorous Probability Of Detection function definition and evaluation. This paper presents an experimental approach with a statistical procedure for the evaluation of detection threshold of a guided waves based SHM system oriented to delaminations detection on a typical wing composite layered panel. The experimental tests are mostly oriented to characterize the statistical distribution of measurements and damage metrics as well as to characterize the system detection capability using this approach. Numerically it is not possible to substitute part of the experimental tests aimed at POD where the noise in the system response is crucial. Results of experiments are presented in the paper and analyzed.
Composite materials are susceptible to hidden defects that may occur during manufacturing and service (e.g., foreign object impact) and may grow to a critical size, jeopardizing the integrity of the structure. Among the various existing techniques, guided wave methods provide a good compromise in terms of sensitivity to a variety of damage types or defects and extent of the area that can be monitored, given the ability of these waves to travel relatively long distances within the structure under investigation. Wave propagation in composite structures presents several complexities for effective damage identification. The material inhomogeneity, the anisotropy and the multi-layered construction lead to the significant dependence of wave modes on laminate layup configurations, direction of propagation, frequency, and interface conditions. This paper is concerned with the detection and characterization of small emerging or existing defects in composite structural components using a recently developed technique employing an array of surface mounted broadband ultrasonic transducers as actuators and sensors as well as theoretical analysis to interpret the recorded signals. The technique is applied to panels with different thicknesses, including stiffened specimens with stringer-panel disbonding. The major objectives of this research is to extend the current capabilities of ultrasonic methods to wider areas of coverage, faster inspection procedures, lower percentage of false positives and less dependence of manual operations. The method is based on the well known fact that guided waves are strongly influenced by inter-ply delaminations and other hidden defects in their propagation path.
The paper presents a unified computer assisted automatic damage identification technique based on a damage
index, associated with changes in the vibrational and wave propagation characteristics in damaged structures.
An improved ultrasonic and vibration test setup consisting of distributed, high fidelity, intelligent, surface
mounted sensor arrays is used to examine the change in the dynamical properties of realistic composite
structural components with the appearance of damage. The sensors are assumed to provide both the low
frequency global response (i.e., modal frequencies, mode shapes) of the structure to external loads and the
(local) high frequency signals due to wave propagation effects in either passive or active mode of the
ultrasonic array. Using the initial measurements performed on an undamaged structure as baseline, the
damage indices are evaluated from the comparison of the frequency response of the monitored structure with
an unknown damage. The technique is applied to identify impact damage in a woven stiffened composite
plate that presents practical difficulties in transmitting waves across it due to scattering and other energy
dissipation effects present in the material and the geometry of the structure. Moreover, a sensitivity analysis
has been carried out in order to estimate a threshold value of the index below which no reliable information
about the state of health of the structure can be achieved. The feasibility of developing a practical Intelligent
Structural Health Monitoring (ISHM) System, based on the concept of "a structure requesting service when
needed," is discussed.
KEYWORDS: Composites, Control systems, Temperature metrology, Finite element methods, LabVIEW, Systems modeling, Manufacturing, Data modeling, Sensors, Metals
The paper presents the activities performed by the authors in order to develop and validate an experimental set-up for measurements of damping characteristics of typical materials employed within aeronautical and industrial field for passive vibrations reduction. These activities have been carried out within the research program funded by the European Commission named “F.A.C.E.” (Friendly Aircraft Cabin Environment). The set-up has been designed to operate through a PC-based acquisition system developed in LABVIEW programming environment. The development of the experimental damping measurement set-up is based on the principle of the “Oberst beam”, and it has been improved to allow the implementation of different approaches with “contacting” sensors and actuators. The influence of the damping on the stability and reliability of the results will be investigated, by evaluating the effect of the beam thickness to the applied damping thickness ratio. The results will be presented for some damping treatments like “constrained layers” as far as for rubbery materials commonly employed within the aeronautical field. These activities are aimed to the implementation of a better damping modelisation of a typical finite element model of light structures.
The paper presents a new application of a NDT based on vibrations measurements which has been developed by the authors and already tested for analyzing damages of many structural elements. The proposed method is based on the acquisition and comparison of Frequency Response Functions (FRFs) of the monitored structure before and after a damage occurred. Structural damages modify the dynamical behavior of the structure and consequently its FRFs making possible to calculate a representative Damage Index. Main target of this work was to test the developed NDT for identifying and analyzing typical corrosive phenomena. A thin aluminium plate, typical for aeronautical employ, was chosen as test-article; an array of piezoelectric patches has been employed for both exciting the test article and acquiring the structural response in many points of it. Both homogeneous and localized corrosion phenomena have been recreated on the plate surface in laboratory environment. Two expressions of Damage Indices were calculated and statistically analyzed. Very small percentages of thickness variations have been detected and localized using the proposed methodology and it has been possible to follow corrosion dynamics (in terms of mass and stiffness variations of the test-article) by monitoring the values of the experimental Damage Indices.
Purpose of the work is to present the formulation of a new experimental procedure to employ in problems of damage analysis of structural elements. The proposed method is based on the acquisition and comparison of Frequency Response Functions (FRFs) of the monitored structure before and after a damage occurred. Structural damages modify the dynamical behavior of the structure and consequently its FRFs making possible to calculate a representative 'Damage Index.' The experimental activity was carried on using two prototypes of magnetostrictive actuators developed within the European Commission funded project named MADAVIC (Magnetostrictive Actuators for Damage Analysis and VIbration Control). Three kinds of damages have been simulated on two beam-like structures: little mass disturbances, partial cuts of the beam sections and constraints yielding. Two Damage Indices expressions representative of the damages were calculated. Much effort was spent in order to assess the reliability of the damages identification by using a 'repetitiveness index' related to the lowest, measurable damage extension and the statistical T-Test, in order to verify if each calculated index was really representative of a structural damage, rather than of unforeseen differences between the FRFs.
In this work an approach to Structural Damage Analysis based on the utilization of actuators made by magnetostrictive materials is presented. New developed magnetostrictive actuators used to vibrate very stiff structures and able to acquire Frequency Response Functions (FRFs) in many points using piezoelectric sensors are the constitutive components of this approach. The numerical elaboration of the FRFs permits to analyze correlation between damaged and integer structures. In this way it is possible to create one or more Damage Indices in order to identify, localize and quantify different kinds of damages simulated on the structure. In particular it has been possible to perform many analyses during experimental tests in many frequency ranges and for different kind of damages. These experiences have led to a Damage Index whose values: (1) show a dependence with the distance between the damage and the sensor by which FRFs have been acquired, (2) increase reducing the distance between the sensor position and the damage location, (3) become higher if the damage extension increases. Furthermore, aim of this paper is to demonstrate and discuss the suitability of magnetostrictive devices for the development of an integrated system devoted to the health monitoring of the structures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.