The mechanism responsible for the oxidative stress due to photobiomodulation induced by 1265 nm laser is still unclear. Mitochondria are assumed to be the most probable acceptors of the 1265 nm laser irradiation. We study oxidative stress, mitochondrial potential, GSH, cell viability, DNA damage. We demonstrated that narrowband (highcoherent) and wideband lasers employed at the doses of 9.45 and 66.6-400 J/cm2, respectively, induce a dose-dependent cell death, increase ROS level, disturb mitochondrial functioning and can damage DNA. Thus, the 1265 nm lasers can affect the HCT116 cells through mitochondrial damage. Energy density increase contributes to cell damaging without heating effects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.