In this paper, we report on the potential of silicon oxycarbide (SiOC) for integrated photonic applications. SiOC films are developed by reactive radio frequency magnetron sputtering from a silicon carbide (SiC) target in the presence of argon and oxygen gases. The optical properties of the developed SiOC film are characterized with spectroscopic ellispometry over a broad wavelength range 300-1600 nm. The refractive index n of the SiOC film is 2.2 at wavelength λ = 1550 nm and the extinction coefficient k is estimated to be less than 10-4 in the near-infrared region above 600 nm. The topography of SiOC films is studied with AFM showing very smooth surface, with rms roughness of 0.24 nm. SiOC film with refractive index n = 2.2 is then patterned by direct laser-writing lithography and etched with reactive ion etching to realize high contrast SiOC core optical waveguides for integrated photonics applications. The waveguide losses are characterized at telecommunication wavelength λ = 1550 nm. As an example of photonic integrated devices integrating SiOC films, a microring resonator is fabricated where a SiOC layer is used as a coating material for the core of a silicon oxynitride (SiON) waveguide.
We report on the characteristics of silicon oxycarbide films deposited by reactive radio frequency magnetron sputtering of a silicon carbide target in the presence of argon and oxygen gases. Quantitative characterization of the silicon oxycarbide films is performed extensively by ellipsometry, scanning electron microscopy and atomic force microscopy. Integrated photonic waveguides are demonstrated in silicon oxycarbide films.
Silicon oxycarbide (SiOC) thin films are produced with reactive rf magnetron sputtering of a silicon carbide (SiC) target on Si (100) and SiO2/Si substrates under varying deposition conditions. The optical properties of the deposited SiOC thin films are characterized with spectroscopic ellispometry at multiple angles of incidence over a wavelength range 300- 1600 nm. The derived optical constants of the SiOC films are modeled with Tauc-Lorentz model. The refractive index n of the SiOC films range from 1.45 to 1.85 @ 1550 nm and the extinction coefficient k is estimated to be less than 10-4 in the near-infrared region above 1000 nm. The topography of SiOC films is studied with SEM and AFM giving rms roughness of 0.9 nm. Channel waveguides with a SiOC core with a refractive index of 1.7 have been fabricated to demonstrate the potential of sputtered SiOC for integrated photonics applications. Propagation loss as low as 0.39 ± 0.05 dB/mm for TE and 0.41 ± 0.05 dB/mm for TM polarizations at telecommunication wavelength 1550 nm is demonstrated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.