KEYWORDS: Detection and tracking algorithms, Particles, Expectation maximization algorithms, Signal to noise ratio, Data modeling, Image processing, Computer simulations, Point spread functions, Sensors, Image filtering
Target cluster brings about a light-spot which consists of several neighborhood pixels in image, therefore it is difficult to distinguish between the targets or locate them with sub-pixel accuracy. In this paper, a pseudo oversampling-based C3PC (Covariance Constrained Constructive Particle Clustering) method is proposed to solve the closely space objects problem. As a classical detection and location method, C3PC algorithm, presents a particle clustering decomposition technique. However, the particle distribution according to the pixel gray value yields pixel level accuracy, which will lead to location error. Thus, by using a particle distribution at sub-pixel level, substantially better position accuracy can be obtained. According the characteristic of oversampling, an improved interpolation algorithm which simulating the oversampling techniques of sensor is brought forward. Simulation experiment results show that the positioning accuracy of CSOs in our algorithm is higher than that of C3PC algorithm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.