Optical injection is an effective way to generate a tuned microwave photonic filter (MPF). However, the tuning range of the optical injection-based MPF is limited by the nonlinear dynamics and the nonideal roll-off optical filter. To enlarge the tuning range of the MPF, a polarization modulated optical signal injection distributed feedback semiconductor laser is employed. The method is free from the nonlinear dynamics and the nonideal roll-off optical filter. The experimental result shows that the proposed MPF can be tuned from 0 to 40 GHz by directly tuning the center wavelength of the optical carrier. The tuning range can be increased if polarization modulator and photodetector with larger bandwidth are exploited. To the best of our knowledge, this is the largest frequency tuning range of optical injection-based MPF.
We report a high-power operation of a cladding-pumped Er,Yb-doped superfluorescent fiber source in the C-band. The fiber source produced 11W of single-ended broadband superfluorescence output for a laser diode power of 40W at ~975 nm, and the wavelength range spanned from 1530 nm to 1565 nm with a full width at half maximum (FWHM) of 16nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.