There are many advantages of using unmanned aerial vehicles (UAVs) in remote sensing but when using radiometrically corrected multispectral images. This study focuses on two techniques of obtain a multispectral orthomosaic with suitable radiometric quality considering a day period with minor variations in illumination and clouds. The first technique comprises a radiometric block adjustment combined with empirical line whilst the second technique uses only empirical line. Field measurements with spectrometers were used to assess the techniques. The obtained results show that the radiometric block adjustment presented better results when compared to the radiometric reference targets and its calculated Hemispherical Conical Reflectance Factor (HCRF) from the spectrometer. However, the root mean square error (RMSE), normalized root mean square error (NRMSE) and mean absolute percentage error (MAPE) were similar in both cases, showing that the two proposed workflows can generate multispectral mosaics with acceptable radiometric quality for a period in which illumination conditions are stable. Images difference between each band was produced showing that there was a stronger variation of pixels in the higher slope region, which indicates that additional corrections beyond empirical line are needed in these situations
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.