The Cherenkov Telescope Array (CTA) is the next-generation ground-based observatory for very-high-energy gamma rays. One candidate design for CTA's medium-sized telescopes consists of the Schwarzschild-Couder Telescope (SCT), featuring innovative dual-mirror optics. The SCT project has built and is currently operating a 9.7-m prototype SCT (pSCT) at the Fred Lawrence Whipple Observatory (FLWO); such optical design enables the use of a compact camera with state-of-the art silicon photomultiplier detectors. A partially-equipped camera has recently successfully detected the Crab Nebula with a statistical significance of 8.6 standard deviations. A funded upgrade of the pSCT focal plane sensors and electronics is currently ongoing, which will bring the total number of channels from 1600 to 11328 and the telescope field of view from about 2.7° to 8° . In this work, we will describe the technical and scientific performance of the pSCT.
The novel 9.7m Schwarzschild-Couder Telescope (SCT), utilizing aspheric dual-mirror optical system, has been constructed as a prototype medium size x-ray telescope for the Cherenkov Telescope Array (CTA) observatory. The prototype SCT (pSCT) is designed to achieve simultaneously the wide (≥ 8°) field of view and the superior imaging resolution (0.067 per pixel) to significantly improve scientific capabilities of the observatory in conducting the sky surveys, the follow-up observations of multi-messenger transients with poorly known initial localization and the morphology studies of x-ray sources with angular extent. In this submission, we describe the hardware and software implementations of the telescope optical system as well as the methods specifically developed to align its complex optical system, in which both primary and secondary mirrors are segmented. The pSCT has detected Crab Nebula in June 2020 during ongoing commissioning, which was delayed due to worldwide pandemic and is not yet completed. Verification of pSCT performance is continuing and further improvement of optical alignment is anticipated.
For the first time in the history of ground-based y-ray astronomy, the on-axis performance of the dual mirror, aspheric, aplanatic Schwarzschild-Couder optical system has been demonstrated in a 9:7-m aperture imaging atmospheric Cherenkov telescope. The novel design of the prototype Schwarzschild-Couder Telescope (pSCT) is motivated by the need of the next-generation Cherenkov Telescope Array (CTA) observatory to have the ability to perform wide (≥8°) field-of-view observations simultaneously with superior imaging of atmospheric cascades (resolution of 0:067 per pixel or better). The pSCT design, if implemented in the CTA installation, has the potential to improve significantly both the x-ray angular resolution and the off-axis sensitivity of the observatory, reaching nearly the theoretical limit of the technique and thereby making a major impact on the CTA observatory sky survey programs, follow-up observations of multi-messenger transients with poorly known initial localization, as well as on the spatially resolved spectroscopic studies of extended x-ray sources. This contribution reports on the initial alignment procedures and point-spread-function results for the challenging segmented aspheric primary and secondary mirrors of the pSCT.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.