This will count as one of your downloads.
You will have access to both the presentation and article (if available).
MSE will reuse the same building and telescope pier as CFHT. However, it will be necessary to upgrade the support pier to accommodate a bigger telescope and replace the current dome since a wider slit opening of 12.5 meters in diameter is needed. Once the project is completed the new facility will be almost indistinguishable on the outside from the current CFHT observatory. MSE will build upon CFHT’s pioneering work in remote operations, with no staff at the observatory during the night, and use modern technologies to reduce daytime maintenance work.
This paper describes the design approach for redeveloping the CFHT facility for MSE including the infrastructure and equipment considerations required to support and facilitate nighttime observations. The building will be designed so existing equipment and infrastructure can be reused wherever possible while meeting new requirement demands. Past experience and lessons learned will be used to create a modern, optimized, and logical layout of the facility. The purpose of this paper is to provide information to readers involved in the MSE project or organizations involved with the redevelopment of an existing observatory facility for a new mission.
Maunakea is one of the best sites in the world for astronomy and, at the same time, a culturally and environmentally sensitive area. The location of the current 3.6m Canada France Hawaii Telescope (CFHT) is arguably one of the best observation points in Maunakea, and thus, it was resolved to minimize impact on the site by redeveloping the 3.6 meter CFHT Telescope and using their former facility building and telescope pier to build and host a larger 10-meter class telescope for the MSE Project.
The MSE – CFHT Corporation entrusted IDOM with the Conceptual Design of the MSE Telescope. The telescope design developed by IDOM features a novel architecture that combines well-proven and robust technologies, integrated in a telescope assembly that delivers optomechanic and mechatronic performances exceeding the 10-meter class telescopes currently in operation.
The developed solution offers a very high stiffness-to-mass ratio that leads to optimal seeing performance. It also incorporates a high efficiency seismic protection system and other remarkable features.
To start with the analysis, first the main implications of the deep space scenarios are summarized, since they are the driving requirements to establish the technical specifications for the large OGS. Next, both the main characteristics of the OGS and the potential configuration approaches are presented, getting deeper in key subsystems with strong impact in the performance. The different configurations are compared from the technical point of view, taking into account the effect of atmospheric conditions. Finally a very preliminary cost analysis for a large aperture OGS is presented.
To accomplish this task, plate coil heat exchanger panels will be installed on the DKIST enclosure that are designed to keep the temperature at ambient temperature +0°C/-4°C. To verify the feasibility of this and to validate the design models, a test rig has been installed at the summit of Haleakalā. The project’s purpose is to confirm that the plate coil panels are capable of maintaining this temperature throughout all seasons and involved collecting data sets of various variables including pressures, temperatures, coolant flows, solar radiations and wind velocities during typical operating hours. Using MATLAB, a script was written to observe the plate coil’s thermal performance. The plate coil did not perform as expected, achieving a surface temperature that was generally 2ºC above ambient temperature. This isn’t to say that the plate coil does not work, but the small chiller used for the experiment was undersized resulting in coolant pumped through the plate coil that was not supplied at a low enough temperature. Calculated heat depositions were about 23% lower than that used as the basis of the design for the hillers to be used on the full system, a reasonable agreement given the fact that many simplifying assumptions were used in the models. These were not carried over into the testing.
The test rig performance showing a 23% margin provides a high degree of confidence for the performance of the full system when it is installed. If time allows, additional testing could be done that includes additional incident angles and times of day. This would allow a more complete analysis. If additional testing were to be performed, it’s recommended to use a larger chiller capable of reaching lower temperatures. The test rig design could also be optimized in order to bring the plate coil up to its maximum efficiency. In the future, the script could be rewritten in a different computer language, so that the data could be solved for quicker. Further analysis could also include different types of coolants.
After the successful delivery of the first telescope (operative since 2012), Idom is currently involved on the turn key supply of the second telescope (phase II). The work started in June 2013 and it will be completed in a challenging period of 12 months (operative at the beginning of July 2014), including design, factory assembly and testing, transport and final commissioning on site.
This second unit will improve the opto-mechanical performance and maintainability. The telescope will have an unlimited rotation capacity in azimuth axis and a range of movement between 25°-95° in elevation axis. An integrated rotary joint will transmit fluid, power and signal to the rotary elements. The pointing and tracking accuracy will be significantly below to specification: 1.76 arcmin and 44 arcsec, respectively.
This project completes Idom´s contribution during phase I, which also comprises the integration and functional tests for the 5 polarimeters of the first instrument in Bilbao headquarters, and the design and supervision of the building which protects both telescopes, including the installation and commissioning of the mechanism for shutters aperture.
View contact details
No SPIE Account? Create one