Design for high efficiency, high power traveling wave electroabsorption modulator using Intra-Step-Barrier Quantum Well (IQW) and Peripheral Coupled waveguide (PCW) designs are presented. Both of these designs have separately yielded EAMs with high optical power handling and low Vp properties, in an analog fiber link configuration. The IQW EAM has low Vp (~0.73 V) and high power handling (100 mW). The lumped element IQW EAM has achieved a link gain of -16 dB, a multi-octave SFDR of 110 dB-Hz2/3 and a single-octave SFDR of 121dB-Hz4/5 at the 1543 nm wavelength. The PCW MQW EAM with lumped element configuration can achieve a low link low, a high multi-octave SFDR at the same wavelength. The traveling wave properties of these EAMs are under investigation.
A new approach for linearizing electroabsorption modulators (EAM) is presented here. It will be very useful for broadband, analog, radio frequency fiber-optic links. In this approach, two or more EAM will be fabricated in series on the same waveguide. Theoretical analysis shows that cancellation of both the second order and third order harmonic distortions can be obtained simultaneously by using proper electrode length and by biasing appropriately the electrodes, leading to an enhancement of the multi-octave spurious free dynamic range (SFDR). Simulation shows that the SFDR of the optical link for the two-electrode case is 10 dB larger than that for a single electrode case. Experimental confirmation of the theoretical prediction on distortion reduction is also presented.
Semiconductor electroabsorption modulator (EAM) is a promising alternative to lithium niobate modulator for digital and analog fiber optic links due to its inherent small size, high modulation efficiency, and potential of monolithic integration with other electronic and optoelectronic components. For high-speed application, the bandwidth of the lumped element EAM is known to be RC-time limited. To achieve an ultra large bandwidth in lumped element EAM, the modulation efficiency has to be greatly sacrificed. This is especially critical in analog operation where RF link loss and noise figure must be minimized. To overcome the RC bandwidth limit and to avoid significantly compromising the modulation efficiency, the traveling wave electroabsorption modulator has been proposed and experimentally investigated by several authors.
Analog fiber optic links can be used to transmit microwave and millimeter wave signals in applications such as cable TV, antenna remoting and active phased array. In this paper, we examine various issues pertaining to an integrated laser- modulator transmitter module for analog fiber optic links: (1) the performance requirements of the lasers, (2) the performance requirements of the electroabsorption modulator, (3) the bias control of the electroabsorption modulator.
A Franz-Keldysh effect InGaAsP electroabsorption waveguide device is utilized as the high-frequency, high-linear dynamic range modulator and photodetector. The dual-function modulator/photodetector can be useful in compact transmit/receive front end antenna architectures. Adjusting the electrical bias to the reverse-biased p-i-n diode, either efficient optical modulation or detection is demonstrated. As an electroabsorption modulator, a fiber optic link with a minus 17.4 dB rf loss and a 124 dB-Hz4/5 sub-octave spurious-free dynamic range is obtained with electrical biases in the 2 to 3 V range. As a waveguide photodetector, a 0.47 A/W fiber coupled responsivity, photocurrents up to 20 mA, and an output second-order intercept of plus 34.5 dBm are achieved at 7 V electrical bias. Supporting measurements on additional test devices show a trend toward larger intercept point with longer device lengths.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.