An evolving combat arena poses an ever-growing hostile fire threat for various ground and airborne targets. Protecting both static posts and moving military platforms against these threats require high performance and affordable solutions, favoring uncooled sensing alert technologies. By analyzing accumulated target and clutter data using new algorithmic and hardware building blocks we establish improved hostile fire indication system configurations. The paper will review new system demonstrations harnessing uncooled IR sensors technology alongside empirical field testing results.
We present a novel algorithm for direct image registration, based on a generic
description of the geometric transformation. The direct image registration algorithm
consists of minimizing the intensity discrepancy between images. We propose the
Gauss - Newton algorithm for the solution of this minimization problem. The method
solves the optical flow equation iteratively to reduce the cost function. Registration
was successfully performed on images taken from both aerial and ground platforms.
Middle infrared laser systems for countermeasures against heat seeking missiles are currently under development. These systems, based on optical parametric oscillators, are complex, bulky and expensive. Middle-infrared fiber lasers emitting in the 3-5μm spectral region may provide an attractive alternative to the systems under development. We have investigated luminescence of silver bromide-chloride crystals and fibers doped with rare earth ions (e.g. Pr3+, Tb3+ and Nd3+) in the near and middle infrared spectral ranges. The emission, excitation, and absorption spectra, as well as the kinetic parameters, were measured over a broad temperature range. The crystal doping was produced by growing from the melt. No significant differences were found between the luminescence properties in bulk crystals and in fibers. The Judd Ofelt analysis was applied to the doped crystals, and the transition rates, branching ratios, and quantum efficiencies were calculated. Good agreement was obtained between theory and experiment. The strong middle-infrared luminescence and the kinetic parameters of these crystals make them good candidates for the fabrication of fiber lasers in the 4-5.5μm spectral range.
Middle infrared lasers for countermeasures against heat seeking missiles are currently under development. These systems, based on diode pumped solid state lasers pumping optical parametric oscillators, are complex, bulky and expensive. Middle infrared fiber lasers in the 3 to 5 μm spectral region which operate without a need for frequency conversion may provide an attractive option. We have investigated the luminescence of silver bromide-chloride crystals and fibers doped with Pr3+ ions in the near and middle infrared spectral ranges. The emission, excitation, and absorption spectra, as well as the kinetic parameters, were measured over a broad temperature range. The crystal activation was produced by growing from the melt. No differences were found between the luminescence properties in the crystals and the fibers. The Judd Ofelt analysis was applied to the Pr doped crystals, and the transition rates, branching ratios, and the quantum efficiencies were calculated. Good agreement was obtained between the theory and the experiment. The strong middle infrared luminescence and the kinetic parameters of these crystals make them good candidates for the fabrication of fiber lasers in 4 -5.5μm spectral range. Such lasers would be very useful for countermeasure devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.