Optical overlay metrology has been used for years as the baseline for overlay control, measuring an optical target in the scribe line with optimized design to best match the on-product overlay. However, matching the optical target overlay measurements to the real on-product overlay becomes a serious challenge for most advanced technology nodes and forces the industry to develop different or complementary solutions. To identify and better quantify the different, well-known overlay accuracy detractors, in this work we have used optical and state-of-the-art electron beam technologies (eBeam) to measure on-product and on-optical target overlay errors of a wafer processed at imec using 5 nm technology node design rules and intentionally introduced overlay skews of +10 and -10 nm in x and y axis. The overlay errors as measured by the SEM eBeam system, equipped with elluminator™ technology which enables fast see through measurements of overlay which has been compared with (X-sectional) STEM-HAADF reference overlay metrology data. The on-product and optical target SEM overlay measurements show very similar wafer maps, in line with the applied overlay errors during the lithography exposure step. eBeam and TEM data show excellent correlation for the on-product overlay errors and the eBeam data also reveal a significant bias of ~ 6 nm between on-product and on-target overlay errors. From these results it can be concluded that manufacturing of advanced devices which require accurate OPO control, will need new metrology strategies that combine eBeam and optical or, eventually, use only eBeam technologies to guarantee effective overlay control with sufficient accuracy.
Node to node design rule are shrinking to enable better performance envelope in storage, computing power and electrical usage. A major part of every technology development is verification of the actual device overlay for thick stacks. Today the IC manufactures utilize TEM, Fib and other methods to understand the impact of overlay for thick stacks. These methods, which are considered as a “ground truth” of the fab, can give very good resolution of the features shape characteristics, material contrast, metrology and defectivity. That said, some are destructive and have long time to results. Another approach for thick stack is to use eBeam high kV landing with elluminator technology, this enables fast see through measurements of overlay, yet this approach has also limitation where layer stack thickness exceeds see through imaging capability while chipmakers still require seeing the bottom layer to measure the overlay.
In this paper, we propose a flow of accurate in-line runtime delayer method flowed by an eBeam elluminator technology for overlay verification as an extension of current eBeam measurement capabilities. This flow can be complimentary for different applications space where there’s imaging limitation of the eBeam. The excellent local delayer control enables shorter time to root cause, process and design verification metrology (as a “golden ruler”) in runtime fab.
The work is based on IMEC frontend wafer at source drain Implant process steps after Hard Mask Etch. Looking at device features we explore the accuracy of new flow in sampling fins, dummy gate and Hard mask openings for implant process steps. Reference eBeam metrology will verify the accuracy of the delayer metrology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.