Asgard/NOTT is an ERC-funded project hosted at KU Leuven and is part of a new visitor instrumental suite, called Asgard, under preparation for the Very Large Telescope Interferometer (VLTI). Leveraging nulling capabilities and the long VLTI baselines, it is optimized for high-contrast imaging of the snow line region around young nearby main-sequence stars. This will enable the characterization of the atmosphere of young giant exoplanets and warm/hot exozodiacal dust with spectroscopy in the L’-band (3.5-4.0μm). In this work, we present the first lab assembly of the instrument done at KU Leuven and the technical solutions to tackle the challenge of performing nulling in the mid-infrared despite the thermal background. The opto-mechanical design of the warm optics and the injection system for the photonic chip are described. The alignment procedure used to assemble the system is also presented. Finally, the first experimental results, including fringes and null measurements, are given and confirm the adequacy of the bench to test and optimize the Asgard/NOTT instrument.
NOTT (formerly Hi-5) is the L’-band (3.5-4.0μm) nulling interferometer of Asgard, an instrument suite in preparation for the VLTI visitor focus. The primary scientific objectives of NOTT include characterizing (i) young planetary systems near the snow line, a critical region for giant planet formation, and (ii) nearby mainsequence stars close to the habitable zone, with a focus on detecting exozodiacal dust that could obscure Earthlike planets. In 2023-2024, the final warm optics have been procured and assembled in a new laboratory at KU Leuven. First fringes and null measurements were obtained using a Gallium Lanthanum Sulfide (GLS) photonic chip that was also tested at cryogenic temperatures. In this paper, we present an overall update of the NOTT project with a particular focus on the cold mechanical design, the first results in the laboratory with the final NOTT warm optics, and the ongoing Asgard integration activities. We also report on other ongoing activities such as the characterization of the photonic chip (GLS, LiNbO3, SiO), the development of the exoplanet science case, the design of the dispersion control module, and the progress with the self-calibration data reduction software.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.