Terahertz (THz) spectra of two TNT-related compounds (4-NT and 2,6-DNT) are investigated using Fourier transform infrared spectroscopy (FTIR) and THz time-domain spectroscopy (THz-TDS) between 0.1 to 20 THz. The Density Functional Theory (DFT) is applied to calculate the THz spectra of these two compounds. The transmission, diffuse reflection, and calculated spectra are in good agreement. The measured THz resonance lines from the transmission and diffuse reflectance spectra are assigned based on DFT simulation. The observed THz signatures imply that the THz spectrum has potential for standoff detection of explosive and related compounds (ERCs) in the THz range.
Terahertz spectroscopy can be used to detect explosives and related compounds by the unique absorption lines in the far infrared region. We will present results in both transmission and reflection geometries using a conventional time-domain terahertz spectroscopy system. We illustrate the importance of a uniform reference, and uniform sample preparation. Some problems can be avoided by generalizing this technique to detection with narrow linewidth terahertz illumination and a square law (intensity) detector.
Diffuse reflectance spectrum (DRS) technique is extensively used in UV/visible and middle/near infrared for characterizing/analyzing powders and samples with rough surface. In this paper, we report on the DRS investigation of explosives & related compounds in the THz region, which is more difficult because of the limitations of far infrared sources, beam splitters and detectors. We also discussed the penetration depth and the sensitivity for this technique in the THz range.
THz diffuse reflectance spectra (50-680 cm-1) were taken on a Bruker 66V/S FTIR spectrometer with a Specac diffuse reflectance accessory. A number of explosive and related compounds were investigated in both transmission and diffuse reflectance modes, and a good agreement between transmission and diffuse reflection spectra was demonstrated. Our experimental results show that DRS technique has advantages over transmission spectrum technique, such as better sensitivity and easier sample preparation. Therefore, the THz DRS has the potential for the standoff detection of explosives and related compounds in the real world applications.
Far infrared spectra of 14 commonly used explosive samples have been measured by using Fourier Transform Infrared Spectroscopy (FTIR) and THz Time-Domain Spectroscopy (THz TDS). New absorption resonances between 20 cm-1 and 650 cm-1 are reported. Below 20 cm-1, no clear absorption resonances are observed in all the explosives. There is a good consistency of far-IR spectrum measured by Far-FTIR and by THz TDS in explosives 3,5-DNA and 2,4-DNT. Observed far-IR spectrum of TNT is compared with a previously reported theoretical calculation.
Terahertz time domain spectroscopy (THz-TDS) has a wide range of
applications from semiconductor diagnostics to biosensing. Recent
attention has focused on bio-applications and several groups have
noted the ability of THz-TDS to differentiate basal cell carcinoma
tissue from healthy dermal tissue ex vivo.
The contrast mechanism is unclear but has been attributed to
increased interstitial water in cancerous tissue. In this work we
investigate the THz response of human osteosarcoma cells and
normal human bone cells grown in culture to isolate the cells'
responses from other effects. A classification algorithms based
on a frequency selection by genetic algorithm is used to attempt
to differentiate between the cell types based on the THz spectra.
Encouraging preliminary results have been obtained.
Gas sensing and identification in far infrared or THz band is useful because many polar molecules have unique spectral fingerprints in this range, which are from the rotational transitions of the molecules. We have investigated the potential of THz time-domain spectroscopy (THz TDS) as a quantitative analysis technique for gas sensing. Ammonia vapor has been chosen as a sample gas. The absorption cross section at 0.572 THz of ammonia in the pressure range of 0.2-20 Torr was extracted to be (5.7±0.3)×10-20 cm2/molecule. In addition, a pressure calibration curve based on pure ammonia measurements was obtained. Using this calibration curve, we made quantitative analysis on the mixture of ammonia and air at 100 Torr. The result shows that THz TDS is an appropriate technique for quantitative analysis of polar gas and gas mixture. We measured the THz spectra of ammonia at different partial pressures in ~590 Torr nitrogen (78% nitrogen in atmosphere), and obtained a pressure calibration curve. THz spectra of ammonia at different partial pressures in 760 Torr atmosphere were measured. Based on the principle of differential optical absorption spectroscopy (DOAS) and the pressure calibration curve got in ~590 Torr nitrogen, we obtained the ammonia partial pressures. The result is compared with the value measured by vacuum gauge and the maximum error is 30%. This indicates that THz TDS based on principle of DOAS is an applicable quantitative technique for sensing ammonia or other polar gases in atmosphere.
Terahertz (THz) time-domain spectroscopy (TDS) is a powerful measurement tool for characterizing materials with potential fingerprint capability. Due to its pulsed nature, the spectral resolution of THz-TDS is limited by its temporal scanning measurement and its dynamic range. A novel THz-TDS system with a large signal-to-noise ratio (SNR) improves the spectral resolution. Techniques that will enhance the performance of THz-TDS are demonstrated.
Water, at both the liquid and gas phase, maintains a high absorption coefficient in the terahertz (THz) frequency range. As a result, a major limitation of THz time-domain spectroscopy (THz-TDS) for real-world applications is water attenuation. The humidity in the atmosphere affects THz waves (T-ray) for long distance measurement and tracing materials, such as explosive materials. We measure air at various humidity and we report how humidity affects THz-TDS measurement. We also report the changes to spectrum amplitudes by measuring water vapor absorption in a vacuum chamber.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.