The Ge2Sb2Te5 phase-change alloy (GST) is known for its dramatic complex refractive index (and electrical) contrast between its amorphous and crystalline phases. Switching between such phases is also non-volatile and can be achieved on the nanosecond timescale. The combination of GST with the widespread SiN integrated optical waveguide platform led to the proposal of the all-optical integrated phase-change memory, which exploits the interaction of the guided mode evanescent field with a thin layer of GST on the waveguide top surface. The relative simplicity of the architecture allows for its flexible application for data storage, logic gating, arithmetic and neuromorphic computing. Read operation relies on the transmitted signal optical attenuation, due to the GST extinction coefficient. Write/erase operations are performed via the same optical path, with a higher power ad-hoc pulsing scheme, which locally increases the temperature and triggers either the melt-quench process (write) or recrystallization (erase), encoding the information into the GST crystal fraction. Here we investigate the physical mechanisms involved in the write/erase and read processes via computational methods, with the view to explore novel architecture concepts that improve memory speed, energy efficiency and density. We show the achievements of the development of a 3D simulation framework, performing self-consistent calculations for wavepropagation, heat diffusion and phase-transition processes. We illustrate a viable memory optimization route, which adopts sub-wavelength plasmonic dimer nanoantenna structures to harvest the optical energy and maximize light-matter interaction. We calculate both a speed and energy efficiency improvement of around one order of magnitude, with respect to the conventional (non-plasmonic) device architecture.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.