KEYWORDS: Modulation transfer functions, Cameras, Spatial frequencies, Modulation, Fermium, Frequency modulation, Imaging systems, Near infrared, Signal to noise ratio, Mirrors
Pre-launch performance has been characterized on the EOS-C camera: capable of Earth observation at 2.5 m resolution
and 20 km swath width. Topics discussed in this paper include measurements of system modulation transfer function
(MTF) and pixel lines-of-sight (LOS); radiometric and spectral calibration; end-to-end imaging.
The effect of chip size on the thermal-optical properties of GaN-based light emitting diodes was investigated. An increase in chip size was associated with a decrease of total series resistance due to enhancement of current spreading area. Consequently, the junction temperature linearly increased with an increase of the driving current, and the increase rate was slower for lager chip size. Moreover, we found out that the driving current and chip size affect the dominant emission wavelength shift that was understood to be a competition between blue shift behaviors of piezoelectricity-induced quantum confined stark effect and red shift behavior of self-heating effect. Thus, the operating current for color stabilization was increased with increasing chip size such as 80mA, 140mA and 160mA for 350×350μm2, 600×600μm2 and 1000×1000μm2 chip sizes, respectively. Herein, the operating current for color stabilization was determined at the driving current, where blue shift of piezoelectricity-induced quantum confined stark effect became in balance with the temperature induced band gap shrinkage resulted from self-heating effect.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.