This work presents the design and fabrication of diffractive optical elements for use in optical communication systems. The device geometry uses a vortex pattern to impart orbital angular momentum (OAM) onto an incident beam, providing a robust method for transmitting information through free space. Two refractive elements were designed and fabricated to use log-polar coordinate transformation of an incident OAM beam at 1550 nm for communications systems. Furthermore, diffractive elements were designed based on the phase profile of this refractive element. Fabrication of the devices uses conventional photolithography on a fused silica substrate.
3D Meta-Optics are optical components that are based on the engineering of the electromagnetic fields in 3D dielectric
structures. The results of which will provide a class of transformational optical components that can be integrated at all
levels throughout a High Energy Laser system. This paper will address a number of optical components based on 2D
and 3D micro and nano-scale structures and their performance when exposed to high power lasers. Specifically, results
will be presented for 1550 nm and 2000 nm spectral bands and power densities greater than100 kW/cm2.
This paper highlights recent developments in resonant optical devices for infrared (IR) and mid-infrared (mid- IR) lasers. Sub-wavelength grating based resonant optical filters are introduced and their application in 2 μm thulium fiber laser and amplifier systems has been discussed. The paper focuses on applying such filtering techniques to 2.8 μm mid-IR fiber laser systems. A narrowband mid-IR Guided-Mode Resonance Filter (GMRF) was designed and fabricated using Hafnium(IV) Oxide film/quartz wafer material system. The fabricated GMRF was then integrated into an Erbium (Er)-doped Zr-Ba-La-Al-Na (ZBLAN) fluoride glass fiber laser as a wavelength selective feedback element. The laser operated at 2782 nm with a linewidth less than 2 nm demonstrating the viability of GMRF’s for wavelength selection in the mid-IR. Furthermore, a GMRF of narrower linewidth based on Aluminum Oxide/quartz wafer material system is fabricated and tested in the same setup. The potentials and challenges with GMRFs will be discussed and summarized.
An efficient monolithic fabrication technique of multiple Guided-Mode Resonance Filter (GMRF) devices on a single
substrate is presented. The devices consist of two crossed linear sub-wavelength grating (SWG) dielectric layers, formed
by etching deposited silicon oxide films, separated by a silicon nitride waveguide. The buried SWG duty cycle is
lithographically modulated to control the device resonance wavelengths, independent of the top SWG. This is because
the buried SWG acts as a tunable effective index layer, controlling the waveguide mode coupling wavelength into the
silicon nitride waveguide layer. The two SWG have different spatial periods, to further reduce resonance coupling
between them. The fabrication is accomplished using existing photolithographic technology, and conventional PECVD
coating techniques.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.