Despite of increasing understandings of UV plasmonic materials, materials that can enable active tuning of UV plasmonic resonance has not been reported. Here, we demonstrate a modification of UV SPR on an aluminum (Al) hole-array by coupling Graphene π plasmon resonance with Al SPR. Graphene monolayer exhibits an abnormal absorption peak in the UV region (270-290nm) due to π plasmon resonance. The location and intensity of the absorption peak depend on the position of Fermi-level, which can be adjusted by electric or chemical doping. Al SPR is shown here to be modified by coupling Graphene π plasmon resonance with Al SPR.
FDTD simulation shows the modification of Al hole-array transmission by adding a single layer of Graphene on top. The shifts of transmission dips after adding a Graphene layer shows a distinct transition at around the Graphene π plasmon position. For transmission dips that are located at shorter wavelength compared to Graphene π plasmon, up to 8nm blue shifts occur after adding Graphene. On the other hand, up to 20nm redshifts occur for transmission dips that are at a longer wavelength relative to Graphene π plasmon. This change in the sign of shifts of transmission dips corresponds to the change in the sign of the real permittivity of Graphene. The amount of shifts diminishes as the transmission dip moves further away from Graphene π plasmon resonance into the visible spectrum. Experimentally we have observed redshifts of SPR dips but not blue shifts possibly due to the poor light collection below 250nm.
Metallic nanostructure can enhance fluorescence through excited surface plasmons which increase the local field as well as improve its quantum efficiency. When coupling to cavity resonance with proper gap dimension, gap hot spots can be generated to interact with fluorescence at their excitation/emission region in UV. A 3D nano-cavity antenna array in Aluminum has been conducted to generate local hot spot resonant at fluorescence emission resonance. Giant field enhancement has been achieved through coupling fundamental resonance modes of nanocavity into surface plasmons polaritons (SPPs). In this work, two distinct plasmonic structure of 3D resonant cavity nanoantenna has been studied and its plasmonic response has been scaled down to the UV regime through finite-difference-time-domain (FDTD) method. Two different strategies for antenna fabrication will be conducted to obtain D-coupled Dots-on-Pillar Antenna array (D2PA) through Focus Ion Beam (FIB) and Cap- Hole Pair Antenna array (CHPA) through nanosphere template lithography (NTL). With proper optimization of the structures, D2PA and CHPA square array with 280nm pitch have achieved distinct enhancement at fluorophore emission wavelength 350nm and excitation wavelength 280nm simultaneously. Maximum field enhancement can reach 20 and 65 fold in the gap of D2PA and CHPA when light incident from substrate, which is expected to greatly enhance fluorescent quantum efficiency that will be confirmed in fluorescence lifetime measurement.
Tunable UV devices can enable enhanced functionalities such as multiplexed sensing, wavelength-tunable light emission and so on. Interestingly, in the UV range, graphene shows a tunable optical absorption due to pi-plasmon resonance. In this work we study the UV transmission through monolayer graphene films transferred on top of aluminum hole-arrays. Transmittance though the hole-array was measured before and after graphene transfer. Interaction of graphene pi-plasmons with surface plasmon resonances leads to strong wavelength shifts, i.e. the surface plasmon resonance at the top-interface red-shifts when graphene is added. Furthermore, it is observed that maximum shift occurs in the 280 to 310 nm wavelength range. This is attributed to an enhanced graphene optical conductivity owed to pi-plasmons.
Extraordinary optical transmission (EOT) is a classic phenomenon in plasmonics. The study of plasmonic nanostructures in the ultraviolet (UV) is a relatively uncharted field due to challenges in both engineering (nanostructure design, optimization, and fabrication) and materials science (detailed composition analysis). Our previous research has been mainly focused on UV field enhancement ofdifferent Al nanostructures. In this work, two-dimensional periodic nanohole arrays in Aluminium (Al) and Magnesium (Mg) films were fabricated using Ga focused ion beam (FIB) lithography. Optical transmission through the arrays was obtained in the UV and visible range, with varying array periodicity. Transmission results showed strong resonance enhancement in the UV and visible region resulting from SPP coupling, with corresponding red-shift as the period increases, while waveguide mode peaks remain in place. Comparing Al and Mg EOT results, Al hole-array enabled larger transmission than that of Mg. Dips in transmission through Al arrays occur at similar spectral positions to those of Mg arrays with same periods. Numerical analysis was carried out through finite-difference-time-domain (FDTD) method, which showed far-field transmission consistent with experiments in general. The model was constructed based on transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) of cross-sectioned samples. The effect of Gallium (Ga) implantation from FIB fabrication was qualitatively studied, which indicated Ga implants inside the hole bottom as well as higher implantation within Mg than that within Al. The model also takes into account sidewall geometry and undercut into the substrate.
Using the Finite Difference Time Domain method, this paper investigates electromagnetic nanofocusing of ultraviolet light transmitting through V-groove like waveguide in Aluminum via simulation. Parametric study of the field enhancement around the V-groove tip area has been conducted via the change of groove depth, width, and the tip angle. Electric field threshold at the tip of the V-groove in the Ultraviolet wavelength has attracted attention and further effort has been placed to find an origination of this phenomenon. Adiabatic condition and attenuation has been taken into consideration as the possible explanation. Through simplification of the V-groove model into its corresponding Metal-Dielectric-Metal (MDM) waveguide at each distance from the tip, numerical calculations have been taken to figure out the impact of waveguide width on the adiabatic parameter, propagation constant and propagation length. Comparison and analysis for those curves with respect to typical Ultraviolet wavelength is conducted and discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.