Nano- and micromechanical oscillators act as great sensors of a wide variety of signals, but their sensitivity and bandwidth can be limited by quantum backaction imposed by optomechanical displacement measurement. We experimentally demonstrate a new paradigm for optomechanical measurement and control based on strong interactions with short light pulses. Using unique nanophotonic optomechanical cavities, we show that single pulsed measurements can achieve sub-quantum-limit resolution. Moreover, we demonstrate a new protocol to deterministically produce squeezed mechanical states, which can reduce single-quadrature fluctuations to arbitrarily small magnitudes. We discuss the application of the resulting squeezing and entanglement for mechanical quantum sensing.
Backward Brillouin scattering in whispering-gallery-mode micro-resonators offers an exciting avenue to pursue both classical and quantum optomechanics applications. Our team—the Quantum Measurement Lab—together with our collaborators, are currently utilizing this regime and the favourable properties it affords for non- Gaussian motional state preparation of the acoustic field. In particular, the high mechanical frequencies, and low optical absorption and heating provide a promising route to overcome current hindrances within optomechanics. Three of our recent experimental results in this area include: (i) Brillouin optomechanical strong coupling, (ii) single-phonon addition or subtraction to a thermal state of the acoustic field, and (iii) performing phase-space tomography of non-Gaussian states generated by single- and multi-phonon subtraction. This SPIE presentation will cover these three results, what they enable, and the broader direction of our lab including the prospects of this platform for quantum-memory applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.