The ASALT lab has been investigating the use of a segmented MEMS
DM in adaptive optics systems. One of the anticipated benefits of a segmented device
is that in monochromatic light the throw is essentially infinite due to the modulo
2π nature of the device. Earlier work demonstrated how this modulo 2π behavior interacts
unexpectedly with a standard proportional integral controller. Here we present
experimental data on this effect to include the testbed on which the data was taken and
the methodology used to measure the effect.
KEYWORDS: Satellites, 3D modeling, Sensors, Control systems, Data modeling, Transmitters, Optical tracking, Signal to noise ratio, Active optics, Retroreflectors
Progress on active tracking at the Starfire Optical Range (SOR) has been significant in the years 2003-2004. We have obtained laser returns from a number of retro-reflector and also unaugmented satellite objects, and compared the signal returns to theories presented in previous SPIE papers (ref. 1-3). These results have concentrated on very low-power, sinusoidally-modulated lasers and a large-aperture, phase-sensitive detection receiver to discriminate the return signal from background and noise. This year, we have installed and used a much higher average power, high-repetition-rate pulsed laser in order to increase the signal-to-noise ratio. Results from these laser engagements will be presented along with simulation and theoretical comparisons. Techniques for diagnosing the laser uplink and the receiver systems will be discussed.
A new tracker is under development at the Starfire Optical Range (SOR). The tracker system's tilt sensor is based on an optical pyramid that creates a quad-cell effect into avalanche photo diodes, sampled at 5000 frames per second. A suite of hardware and software that allows unprecedented flexibility in control system design and implementation delivers the mirror control signals. The control problems associated with this tracking system are interesting due to lightly damped mirror resonances; these dynamics are handled via a tight inner cage loop. Thus, the controller makes use of both optical feedback and mirror position feedback. This paper discusses the design and implementation of the entire tracker system, including sensor characteristics, steering mirror characteristics, electronics, and control algorithms implemented. Experimental results are presented.
The Starfire Optical Range (SOR) 3.5 Meter primary mirror was installed in 1993 and saw first light in February of 1994. The mirror is a monolithic faceplate backed by a honeycomb structure and coated with bare aluminum oxide. Since the mirror's installation, SOR technicians have adhered to a strict cleaning and care regimen that has proven to be very effective in preserving the optical quality of the coating. This presentation describes the care procedures used by the SOR and presents reflectivity/scatter measurements taken over the life of the coating.
We report preliminary results of wavefront tilt measurements for the star Polaris at the Starfire Optical Range 3.5 m telescope at Kirtland AFB in Albuquerque, NM. We measured full aperture gradient tilt by using five pupil masks representing aperture diameters from 0.1m to 3.5m. Two optical configurations were exploited. In the first configuration, five images of Polaris were recorded simultaneously on one camera frame. The telescope was operated in its normal sidereal pointing mode. In the second configuration, pupil masks were changed sequentially. Additional measurements were collected with the telescope bolted to attempt to mitigate the effects of mont jitter. The coordinate system of the tilt measurement was rotated so that the cross-correlation coefficient between X- and Y-axis tilt components is equal to zero. Several interesting results were obtained. We observed anisotropy of the statistics of wavefront tilt. The observed one-axis tilt variances are unequal and the horizontal tilt variance is consistently greater than the vertical one. We believe these effects dare due to anisotropy of the large evidence of the effects of non-Kolmogorov turbulence on wavefront tilt. The measured tilt variance vs. aperture diameter curve has a knee beyond which the tilt variance no longer decreases for larger diameters. In the low and high frequency range the tilt power spectra obey the f-2/3 and f-11/3 power law, respectively. The tilt temporal correlation scale for the 3.5m aperture is on the order of 0.4 sec.
We have experimentally demonstrated for the first time a method for sensing wavefront tilt with a laser guide star (LGS). The tilt components of wavefronts were measured synchronously from the LGS using a telescope with 0.75 m effective aperture and from Polaris using a 1.5 m telescope. The Rayleigh guide star was formed at the altitude of 6 km and at a corresponding range of 10.5 km by projecting a focused beam at Polaris from the full aperture at the 1.5 m telescope. Both telescope mounts were unpowered and bottled down in place allowing us to substantially reduce the telescope vibration. The maximum value of the measured cross-correlation coefficient between the tilt for Polaris and the LGS is 0.71. The variations of the measured cross- correlation coefficient in the range from 0.22 to 0.71 are caused by turbulence at altitudes above 6 km, which was not sampled by the laser beacon, but affected the tilt for Polaris. It is also caused by the cone effect for turbulence below 6 km, residual mount jitter of the telescopes, and variations of the S/N. The experimental results support our concept of sensing atmospheric tilt by observing a LGS with an auxiliary telescope and indicate that this method is a possible solution for the tip-tilt problem.
The optimal track loop controller in an adaptive optics system is a function of the steering mirror dynamics, the temporal statistics of the input disturbance signal, measurement noise, and the sensor gain. The atmospheric input statistics and the sensor gain of a quadrant detector are slowly time-varying on a scale of minutes. If all parameters are known a prior, the analytical optimal controller is found by augmenting the dynamics of the input disturbance spectra and solving an H2 optimization problem. Near optimal control is achieved by augmenting the mount jitter dynamics and a first order approximation of the atmosphere dynamics and finding the LQG/LTR controller. The optimal bandwidth to compensate for time-varying atmospheric disturbance and noise levels is found by optimizing the loop gain. Recursive least squares is used to estimate the sensor gain and optimize the bandwidth in real time. The only measurements necessary for optimization are the residual track errors from a high frame rate, low noise quad cell algorithm and from a low frame rate dense ccd array using a centroid algorithm. Provided the temporal variations in the sensor gain are slow, closed loop robust stability is guaranteed by constraining the optimization algorithm via projection. Simulation results are presented which verify that the constrained optimal controller is achieved under a variety of conditions.
We have observed experimental evidence of the effects of non-Kolmogorov turbulence (NKT) on wavefront tilt. In addition, we have observed the anisotropy of the horizontal and vertical tilt components caused by the anisotropy of turbulence near the telescope. We developed an experimental method, which allowed us to eliminate telescope vibration and isolate the atmospheric tilt from the star Polaris. The spatial and temporal statistics of the wavefront tilt were determined by using aperture masks having diameters in the range from 0.1 m up to 3.5 m. The measured dependencies of the tilt variance on the aperture diameter deviate from the prediction based on the Kolmogorov model. These dependencies have a knee, where the tilt variance approaches a constant level determined by NKT. Anisotropy was observed when comparing the X and Y components of wavefront tilt. On average the horizontal outer scale of turbulence estimated from the tilt statistics is larger than the vertical one by a factor of 2-3. Local topographical features and the telescope dome affect the outer scale with the result that the outer scale measured at the 1 .5 m telescope is smaller than that at the 3 .5 m telescope. The tilt power spectra have a ç2/3 andf"3 behavior in the intermediate and high frequency range, respectively, which is predicted by the Kolmogorov model. In the low frequency range, the spectra do not obey the prediction of existing theoretical models. In this range the power spectra of the horizontal tilt exceed that for vertical tilt as a consequence of anisotropy of turbulence. The tilt temporal correlation scale increases with increasing aperture size. For the large apertures the tilt correlation scale is ofthe order of a few seconds.
The ability to generate long sequences of spatially and temporally correlated phase and slope screens is critical to simulating adaptive optics system. Covariance based methods exist for generating short sequences of phase and slope screens which theoretically could produce the long sequences needed. However, implementing these methods for large sequences of frames is impractical with today's computer technology. FFT-based methods may be used to generate unlimited-length sequence which are periodic. This paper present a method for generating unlimited length sequences which are not periodic using optimal estimators. This method does not yield perfect spatial and temporal statistics for screens separated by large numbers of frames in time. However, the short term statistics for any frame are accurate, while the errors in long term statistics are small.
A 941 channel, 1500 Hertz frame rate adaptive optical (AO) system has been installed and tested in the coude path of the 3.5m telescope at the USAF Research Laboratory Starfire Optical Range. This paper describes the design and measured performance of the principal components comprising this system and present sample results from the first closed-loop test of the system on stars and an artificial source simulator.
A new approach for the experimental study of tilt angular anisoplanatism is developed. This method uses measurements of the random motion of a moon edge image to assess wavefront tilt. This technique provides a wide, continuous range of angular separations which are not available in observations of binary stars. It is determined that the brightness of the moon is sufficient to make observations with a high resolution imaging system. Statistical properties of the tilt angular correlation and tilt averaging function are experimentally investigated. It is shown that tilt angular correlation scale increases from 40 arcsec to 118 arcsec by increasing telescope diameter, indicating that the concept of isoplanatic angle is not applicable to tilt-related phenomena.
The effect of non-Kolmogorov stratospheric turbulence on star image motion is for the first time experimentally investigated with a ground-based telescope. A new approach permitting isolation of star image motion induced solely by atmospheric turbulence is employed. In this technique Polaris image wander is recorded with the telescope bolted in place to minimize uncontrolled telescope motion. High resolution temporal and spatial statistics of wave-front tilt are obtained. The dependencies of tilt variance, tilt power spectra, and tilt temporal correlation on telescope diameter are investigated for five apertures in the range 0.1-1.5 m. The experimental data show the dependence of tilt variance on telescope diameter does not follow the predictions of the Kolmogorov and von Karman models. The graph of the measured dependence has a “knee” which can be explained only by assuming a non-Kolmogorov stratospheric turbulence effect. The difference between tilt components in different axes indicates anisotropy in stratospheric turbulent inhomogeneities. The slopes of the measured tilt power spectra, approximately -1 in the low frequency range and -8/3 in the high frequency range, do not agree with theoretical predictions. The measured tilt temporal correlation scale is in the range 0.1-1.0 s, and the behavior of the correlation coefficients indicates the effect of large scale inhomogeneities not predicted by the conventional model. Uncontrolled telescope motion is manifested as a “bump” in the tilt power spectra in the range 70-90 Hz, but this makes an insignificant contribution to Polaris jitter variance.
A new tracker is under development at the Starfire Optical Range. The tracker is based on a high-speed CCD camera running at 5000 frames per second. A suite of hardware and software that allows unprecedented flexibility in control system design and implementation delivers the mirror control signals. This paper discusses the design and implementation of the entire tracker system, including the camera design and control algorithms implemented. Two control strategies are investigated: simple integral control and linear quadratic gaussian/loop transfer recovery (LQG/LTR). Experimental results are presented for each of the control system algorithms tested.
The centroid calculation algorithms used in some tracking systems have an inherent gain associated with them. This gain is dependent on the relationship between the spot size and the field of view of each element in the detector array. The new CCD tracker developed at the Starfire Optical Range is very sensitive to the overall gain of the tracker algorithms, including centroid calculation gain. This paper discusses an automatic gain control system developed to estimate the instantaneous gain of the centroid calculation algorithm. This system bases its estimate only on the information contained in the pixel counts of the tracker’s detector array. This centroid calculation gain estimate is then used to maintain a constant overall gain throughout the entire tracking system. This paper also shows that the parameter used to estimate centroid estimator gain can be used to estimate the image Strehl ratio.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.