We extend our layer-by-layer model of photonic eigenmodes (resonance, polarization) of semiconductor laser and VCSELs (Fordos PRA 2017) by considering local optical properties in order to describe the above-threshold lasing even in the multimode regime. Such generalization, consistent with the semi-classical description based on the optical Bloch equations, allows to describe the optical gain and the wave propagation within the cavity in a more realistic way. The formalism is suitable to study the mode competition, since the important physical effects such as spatial-hole burning or cross-saturation mechanisms are included self-consistently. The only input parameters are those describing geometrical and local material properties of the cavity and the gain media, without using any mean-field approximations. We will present our generalized approach for modelling real devices and will show how it can serve in determining the main optical and physical properties of such devices.
Spin-polarized lasers such as spin-polarized vertical-cavity surface-emitting laser (spin-VCSELs) are prospective devices in which the radiative recombination of spin-polarized carriers results in an emission of circularly-polarized photons. Nevertheless, additional linear in-plane anisotropies in the cavity generally lead in preferential linearlypolarized laser emission and to possible coupling between modes. Optimization of room-temperature spinVCSELs thus relies on a proper modeling method and on a good understanding of these anisotropies that may reveal (i) a local linear birefringence due to strain fields at the surface or (ii) a birefringence in quantum wells (QWs) due to phase-amplitude coupling originating from the reduction of the biaxial D2d to the C2v symmetry group at the III-V ternary semiconductor interfaces. We present a novel method for the modeling of steady-state and dynamical properties of generally anisotropic multilayer semiconductor lasers containing multiple QWs active region. In order to solve the dynamical properties of spin-VCSELs, we combine here optical Bloch equations for a 4-level system with the scattering-matrix formalism, which treats VCSELs as a multilayer structure containing classical active dipole layers [T. F¨ord¨os et al., Phys. Rev. A 96, 043828 (2017)]. The method is then demonstrated on real semiconductor laser structures with InGaAs/GaAsP quantum wells. It is used for calculation of the laser resonance condition, the polarization properties of eigenmodes, the electromagnetic-field distribution inside the laser cavity, and time-dependent properties of the emitted light.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.