This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Here we present the software StrayLux, a tool to calculate the diffuse stray-light component of optical instruments. This software uses a semi-analytical approach to approximate stray-light contribution of the optical components of an instrument, resulting in shorter calculation times than Monte-Carlo simulations. The tool is completely written in Python, is provided with a graphical interface, and can interact with Zemax to extract the relevant parameters of an optical design.
The latest version of the software is currently made available to ESA industrial partners as a possible benchmark tool for stray-light estimation, within the instrument pre-development activities for future missions.
SPEXone is developed in a partnership between SRON Netherlands Institute for Space Research and Airbus Defence and Space Netherlands with support from the Netherlands Organisation for Applied Scientific Research (TNO) as a Dutch contribution to the NASA PACE observatory launching in 2022.
This paper summarizes design rules and performance aspects identified by ESA during phases A/B1 of the Sentinel-4 and Sentinel-5 missions. The following aspects have been investigated and will be discussed: minimization of polarization dependent spectral oscillations, use of a polarization scrambler in converging beam or parallel beam at large angles of incidence, polarization dependent pointing error.
Although most requirements for the CarbonSat phase A are defined over spatially homogeneous scenes, it is known from previous missions and studies that the observation of real, spatially heterogeneous scenes create specific measurement errors. One obvious mechanism is a distortion of the instrument spectral response function (ISRF) induced by a non-uniform slit illumination in the along-track (ALT) direction. This error has been analysed for several missions (OMI, Sentinel-4, Sentinel-5). The combination of spectrometer smile with across-track (ACT) scene non-uniformities induces similar errors. In this paper, we report about the analysis efforts carried out during CarbonSat preliminary phases to evaluate and mitigate these effects. In a first section, we introduce common concepts and notations for heterogeneous scenes analysis. An exhaustive list of known error mechanisms is presented. In section 2 we discuss the effect of inhomogeneous slit illumination, and describe hardware mitigation with a slit homogeniser. The combination of spectrometer smile and ACT heterogeneities is studied in section 3.
View contact details
No SPIE Account? Create one