Effective local feature extraction is one of the fundamental tools for retrieval applications in computer vision. However, it is difficult to achieve distinguishable local features in large viewpoint variances. In this paper, we propose a novel non-iterative approach of normalized feature extraction in large viewpoint variances, which adapts local regions to rotation, scale variance and rigid distortion from affine transformation. Our approach is based on two key ideas: 1) Localization and scale selection can be directly achieved with the centroid and covariance matrix of the spatial distribution of pixels in a local region. 2) Principal Component Analysis (PCA) on gradients of intensity gives information on texture, thus it can be used to get a resampled region which is isotropic in terms of variance of gradient. Experiments demonstrate that our normalized approach has significant improvement on matching score in large viewpoint variances.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.