Direct imaging of an Earth-like exoplanet requires starlight suppression with a contrast ratio on the order of 1×10-10 at small angular separations of 100 milliarcseconds or less in visible light. To aid the technology development to reach this capability and enable future exoplanet missions, we built a high contrast coronagraph testbed, titled the Decadal Survey Testbed (DST). As of early 2019, the testbed has repeatedly demonstrated a monochromatic contrast floor about 1×10-10, and broadband performance at 550 nm with 10% color band- width <4×10-10 . The testbed has also demonstrated open-loop contrast drift rates of around 10-10/hour, temperature drift stabilities of <10 milliKelvins/day, passive pointing stability of around 0.1 λ/D per day on the occulting mask, and rms pointing jitter around 0.005 λ/D. This paper focusses primarily on the testbed hardware description, and a companion paper by Seo et al. details the experimental results.
Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic
improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of
detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the
micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching
of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon
increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases
circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that
achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can
readily be arrayed in two dimensions with a spacing of 10mm x 18mm.
Recent results from the Heterodyne Instrument for Far-Infrared (HIFI) on the Herschel Space Telescope have confirmed
the usefulness of high resolution spectroscopic data for a better understanding of our Universe. This paper will explore
the current status of tunable local oscillator sources beyond HIFI and provide demonstration of how power combining of
GaAs Schottky diodes can be used to increase both power and upper operating frequency for heterodyne receivers.
Availability of power levels greater than 1 watt in the W-band now makes it possible to design a 1900 GHz source with
more than 100 microwatts of expected output power.
A novel approach for submillimeter-wave heterodyne imaging arrays is presented in this paper. By utilizing diverse
technologies such as GaAs membrane based terahertz diodes, wafer bonding, bulk Si micromachining, micro-lens optics,
and CMOS 3-D chip architectures, a super-compact low-mass submillimeter-wave imaging array is envisioned. A fourwafer
based silicon block for a working W-band power amplifier MMIC is demonstrated. This module drastically
reduces mass and volume associated with metal block implementations without sacrificing performance. A path towards
super compact array receivers in the 500-600 GHz range is described in detail.
The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory utilizes a variety of novel RF components in its five SIS receiver channels covering 480- 1250 GHz and two HEB receiver channels covering 1410-1910 GHz. The local oscillator unit will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, high power W-band Isolators, and novel material systems in the SIS mixers. The National Aeronautics and Space Administration through the Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the local oscillators for the three highest frequency receivers as well as W-band power amplifiers, high power W-band isolators, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. This paper presents an update of the performance and the current state of development.
The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory is comprised of five SIS receiver channels covering 480-1250 GHz and two HEB receiver channels covering 1410-1910 GHz. Two fixed tuned local oscillator sub-bands are derived from a common synthesizer to provide the front-end frequency coverage for each channel. The local oscillator unti will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, and novel material systems in the SIS mixtures. The National Aeronautics and Space Administration's Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the highest frequency (1650-1910 GHz) HEB mixers, local oscillators for the three highest frequency receivers as well as W-band power amplifiers, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. The current state of the art for each of these devices is presented along with a programmatic view of the development effort.
Diffractive optical elements (microlenses) for quantum well infrared photodetectors (QWIPs) were fabricated by two techniques: (1) standard lithography of a binary optical structure and (2) PMMA pattern transfer for an analog diffractive optic structure. The binary lenses were fabricated by sequential contact lithography and etching using two binary masks. The analog diffractive lenses were fabricated in PMMA by direct-write e-beam lithography followed by acetone development. The resulting PMMA surface relief profile was transferred into the GaAs by dry etching. Both types of lenses were etching into GaAs using an electron cyclotron resonance (ECR) microwave plasma etching system. Although the lenses were fabricated accurately, the performance of the QWIPs was not improved as much as expected due to the angle-of-incidence sensitivity of the QWIP light-coupling grating. The lenses would have likely improved the performance of detectors capable of absorbing normally incident light.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.