Hollow-glass waveguides may be a viable technology that, in some cases, may supplant heavier multi-pass cells such as White or Herriott cells for performing trace detection using tunable diode laser absorption spectroscopy. We report here a series of experiments for testing the suitability of waveguides for infrared spectroscopy. The loss characteristics of 1 mm bore diameter waveguides have been measured for straight and coiled lengths. The minimum linear loss coefficient is 0.46 (+/- 0.10) dB/m while the bending loss coefficient is 0.42 dB. Using a flow of 1 ppm nitric oxide in nitrogen mixture through a coiled 3 meter length of waveguide (coil diameter 50 cm) we could detect the fundamental R(8.5), Ω = 3/2 transition of NO with a signal-to-noise (RMS) ratio of 44:1 in direct absorption using a single mode, lead-salt diode laser with six minutes of signal averaging. Using direct absorption spectroscopy we have found that the absorption pathlength is approximately equal to the physical length of the waveguide. Broadband FM diode laser spectroscopy produces for the same transition and waveguide sample conditions a comparable signal-to-noise ratio with less than a second of signal averaging. Finally, we have also performed near-infrared spectroscopy of nitrous oxide flowing through a waveguide using a telecommunications diode laser. The RMS baseline noise for these measurements, in absorbance units, was 2 x 10-5.
Laser characteristics have been evaluated for mid-infrared quantum-cascade (QC) lasers operating in a continuous mode at cryogenic temperatures. These tests were performed to determine the suitability of QC lasers for use in various spectroscopic applications, including Doppler-limited molecular absorption spectroscopy and pressure-limited LIDAR instrumentation. Using rapid-scanning techniques, direct absorbance measurements of nitric oxide, ammonia and nitrous oxide have been performed with QC lasers, operating at either 5.2 or 8.5 micrometers . Measured Doppler-limited absorption profiles show no distortion with increased averaging (up to 103 - 104 samples averaged), thereby minimizing the need for sophisticated data acquisition systems which re- register successive data streams to accommodate for laser frequency jitter and drift. Additionally, the high tuning rates (2.5 cm-1 in 0.6 milliseconds; 5 - 10 kHz sweep repetition rate) achieved with the QC lasers allow for the measure of relatively rapid transient phenomena or a high degree of signal averaging in a short time. Noise- equivalent absorbances of 3 X 10-6 have also been obtained without optimizing the optical arrangement.
We have characterized the spectral noise density and frequency modulation performance of an 8.5 micron quantum- cascade diode (QC) laser operating continuously at liquid nitrogen temperatures. The phase noise is measured by fixing the laser frequency in the half-height region of a molecular resonance and measuring the fluctuations in absorbance; these fluctuations are then accurately converted into measurements in the fluctuations of the absolute frequency. A Fourier analysis of the intrinsic spectral/phase noise show a 1/f2 dependence up to the measurement bandwidth limit of approximately 1 MHz. The laser linewidth is < 1 MHz when measured over several milliseconds. Servo locking schemes will be discussed with the implication that QC laser sources can be stabilized to a high degree. The frequency modulation performance of a QC laser has been measured and synchronous detection of f, 2f and 3f absorption signals (nitrous oxide at 8.5 micrometers ) has been achieved with direct modulation of the injection current.
Continuously tunable single-mode emission of high performance quantum cascade (QC) lasers is achieved by application of the distributed feedback (DFB) principle. The devices are fabricated either as loss-coupled or index-coupled DFB lasers. Single-mode tuning ranges of approximately equals 100 nm have been measured in both of the atmospheric windows at emission wavelengths around (lambda) approximately equals 5 micrometer and 8 micrometer. Linear thermal tuning coefficients of 0.35 nm/K and 0.55 nm/K have been obtained above 200 K for (lambda) approximately equals 5 micrometer and 8 micrometer, respectively. The side-mode suppression ratio is better than 30 dB. Pulsed single-mode operation has been achieved up to room temperature with peak power levels of 60 mW. The lasers also operated single-mode in continuous wave at temperatures above liquid Nitrogen temperature; a single-mode tuning range of 70 nm has been measured in the temperature range from 20 K to 120 K. The gas sensing capabilities of the QC-laser have also been demonstrated using both direct absorption and wavelength modulation techniques. A pulsed, room temperature, QC-DFB laser operating at (lambda) approximately equals 7.8 micrometer was used to detect N2O diluted in N2. The detection limit was found to be approximately equals 500 ppb- m. In addition, the high resolution capability of the QC-DFB lasers (at 77 K) has been demonstrated via continuous, rapid- scan, direct absorption measurement of the Doppler limited R(16.5) lambda doublet of NO at (lambda) approximately equals 5.2 micrometer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.