There are occasions, perhaps due to hardware constraints, or to speed-up data acquisition, when it is helpful to be able to reconstruct a photoacoustic image from an under-sampled or incomplete data set. Here, we will show how Deep Learning can be used to improve image reconstruction in such cases. Deep Learning is a type of machine learning in which a multi-layered neural network is trained from a set of examples to perform a task. Convolutional Neural Networks (CNNs), a type of deep neural network in which one or more layers perform convolutions, have seen spectacular success in recent years in tasks as diverse as image classification, language processing and game playing. In this work, a series of CNNs were trained to perform the steps of an iterative, gradient-based, image reconstruction algorithm from under-sampled data. This has two advantages: first, the iterative reconstruction is accelerated by learning more efficient updates for each iterate; second, the CNNs effectively learn a prior from the training data set, meaning that it is not necessary to make potentially unrealistic regularising assumptions about the image sparsity or smoothness, for instance. In addition, we show an example in which the CNNs learn to remove artifacts that arise when a slow but accurate acoustic model is replaced by a fast but approximate model. Reconstructions from simulated as well as in vivo data will be shown.
Digital breast tomosynthesis is rapidly replacing digital mammography as the basic x-ray technique for evaluation of the breasts. However, the sparse sampling and limited angular range gives rise to different artifacts, which manufacturers try to solve in several ways. In this study we propose an extension of the Learned Primal- Dual algorithm for digital breast tomosynthesis. The Learned Primal-Dual algorithm is a deep neural network consisting of several ‘reconstruction blocks’, which take in raw sinogram data as the initial input, perform a forward and a backward pass by taking projections and back-projections, and use a convolutional neural network to produce an intermediate reconstruction result which is then improved further by the successive reconstruction block. We extend the architecture by providing breast thickness measurements as a mask to the neural network and allow it to learn how to use this thickness mask. We have trained the algorithm on digital phantoms and the corresponding noise-free/noisy projections, and then tested the algorithm on digital phantoms for varying level of noise. Reconstruction performance of the algorithms was compared visually, using MSE loss and Structural Similarity Index. Results indicate that the proposed algorithm outperforms the baseline iterative reconstruction algorithm in terms of reconstruction quality for both breast edges and internal structures and is robust to noise.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.