Custom-access serial holography (CASH) is a new method for optical recording of neuronal activity in 3D at high speed in-vivo. Our implementation allows random access of 20 cells at 1 kHz up to 200 cells at 0.1 kHz in head-fixed behaving mice across a cortical space of 500 x 500 x 500 m3 size. Using fast acousto-optic spatial light modulation, every single laser pulse of a 40 kHz regenerative amplifier is individually patterned to serially access a selection of target cells with a square 5x5 spot excitation volume covering the cell body and, for the prevention of recording artefacts, the surrounding space in anticipation of the cell displacements during animal behavior. The recorded activity is corrected for neuropil signaling by weighted subtraction of a neuropil reference signal obtained by interleaved sampling of neuropil activity close to each cell.
We performed 3D-CASH recordings of GCaMP6f expressing neurons in layer 2/3 and 5 of mouse primary visual cortex in response to moving contrast gratings and applied deconvolution to estimate spikes. Thanks to the fast recording permit by 3D-CASH, the cortical laminar structure is revealed in the temporal organization of the activity: pairwise correlation was higher between intralaminar vs. interlaminar neuron pairs; principal component analysis of the correlation matrix revealed a component assigning weights of opposite sign to neurons in different layers; closest follower spikes occurred with higher probability in a neuron of the same layer. 3D-CASH allows also following the response to the temporal periodicity of the stimulus, which features a phasic (R1) and a non-phasic component (R0). R1/R0 values are broadly distributed with weak bimodality resembling the transition between pure non-phasic response (complex receptive field) to phasic response (simple receptive field).
Our data validate thus 3D-CASH as a method for assessing neuronal activity in 3D-distributed cortical circuits at high sampling rate.
In this paper we present recent work about the application of
digital phase detection for accurate wavelength measurement using
two beam interferometry (lambdametry). The advantage of two beam
interferometry is the sinusoidal fringe signal for which precise
phase detection algorithms exist. Modern algorithms can cope with
different sources of errors, and correct them. We recall the
principle of the Michelson-type lambdameter using temporal
interference and we introduce the Young-type lambdameter using
spatial interference. The Young-type lambdameter is based on the
acquisition of the interference pattern from two point sources
(e.g. two ends of monomode optical fibers) projected onto a CCD
camera. The measurement of an unknown wavelength can be achieved
by comparison with a reference wavelength. Accurate interference
phase maps can be calculated using spatial phase-shifting. In this
way, each small group of contiguous pixels acts as a single
interferometer, and the whole set of pixels corresponds to a
massively parallel interferometric measurement system (up to many
hundreds of thousands units). The major advantage of our method is
its structural simplicity and the possibility of full optical
integration.
The final goal is to achieve a relative uncertainty of the order of
some 10-8 with a measurement duration of the order of some
minutes. Preliminary results are presented.
We present the improved demonstrator of our rewritable holographic memory card system. High density optical storage is realized in a non-commercial optical set-up. Fourier transformed recording is used in a polarization holographic arrangement realizing reading and writing from the same side of the data carrier which is a modified plastic card. Holograms containing binary information of 300 x 220 bits are as small as 0.0484 square mm. The storage layer is amorphous polyester providing repeated writing and erasure cycles and thousandfold readouts without loss of information. Alternate read only system providing non-volatile storage can be realized using 635 nm laser diode.
A pair of special Fourier transforming objectives intended for use in a Holographic Memory Card (HMC) writing/reading equipment have been designed and fabricated. At writing in, the objective Fourier transform a binary pattern, representing the data displayed by an SLM, into the storage medium of the HMC, where the Fourier transform is recorded as a polarization hologram. At reading out, the objectives inverse Fourier transform the reconstructed hologram onto the surface of a CCD array. The Fourier space NA of the objectives is high enough to achieve a theoretical data density of 1 bit/μm2. For comparison reasons we designed two optically identical objectives of basically different structures: one is an aspheric glass doublet, the other is an all-spherical five-element system (arranged in two lens groups). Computer analysis of the objectives shows that both systems are diffraction limited in object and Fourier space and have a distortion of less than 1%. In this paper we overview the theory of Fourier objectives, present our design method, describe the optical behavior of the designed systems, show our test results performed on the fabricated aspheric objective and present our experiences at manufacturing aspheric glass lens prototypes.
We developed a standard credit card-shaped general-purpose data carrier, a reflective Holographic Memory Card (HMC), and the appropriate equipment for its handling. Data recording and retrieval are accomplished by polarisation Fourier holography using a thin layer of photo-anisotropic polymer as the storage material. The data density is about 1 bit/micrometers 2, the maximum storage capacity of the card is around 10 Mbytes assuming a 10 x 10 mm storage area. Data is stored in the form of microholograms, from which 40x40 pieces are recorded on the HMC. The optical system involved performs data writing/reading/erasing and also locates the position of the microholograms. Main components of the optical system are an SLM and CCD for opto-electronic conversion, a frequency-doubled solid-state laser source, a beam shaping system that provides homogeneous illumination of the SLM, an interferometer for hologram construction, special Fourier transforming objectives and a random-phase mask for optimised hologram recording. Our results include conceptual planning, design, fabrication and assembling of the optical system. In the present paper we describe principle of operation including layout of the elements, and explain the operation of the equipment in detail.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.