To support people’s wayfinding activities we propose a Visible Light Communication (VLC) cooperative system that supports guidance services and uses an edge/fog based architecture for wayfinding services. A mesh cellular hybrid structure is proposed. The dynamic navigation system is composed of several transmitters (ceiling luminaries) which send the map information and path messages required to wayfinding. The luminaires are equipped with one of two types of nodes: a “mesh” controller that connects with other nodes in its vicinity and can forward messages to other devices in the mesh, effectively acting like routers nodes in the network and a “mesh/cellular” hybrid controller, that is also equipped with a modem providing IP base connectivity to the central manager services. These nodes acts as borderrouter and can be used for edge computing. Mobile optical receivers, using joint transmission, collect the data at high frame rates, extracts theirs location to perform positioning and, concomitantly, the transmitted data from each transmitter. Each luminaire, through VLC, reports its geographic position and specific information to the users, making it available for whatever use. Bidirectional communication is implemented and the best route to navigate through venue calculated. The results show that the system makes possible not only the self-localization, but also to infer the travel direction and to interact with information received optimizing the route towards a static or dynamic destination.
Increasing interest in indoor navigation has recently been generated by devices with wireless communication capabilities
that enabled a wide range of applications and services. The rise of the Internet of Things (IoT) and the inherent end-to-end
connectivity of billions of devices is very attractive for indoor localization and proximity detection. Other fields,
such as, marketing and customer assistance, health services, asset management and tracking, can also benefit from
indoor localization. Different techniques and wireless technologies have been proposed for indoor location, as the
traditional Global Positioning System (GPS) has a very poor, unreliable performance in a closed space. The work
presented in this research proposes the use of an indoor localization system based on Visible Light Communication
(VLC) to support the navigation and operational tasks of Autonomous Guided Vehicles (AVG) in an automated
warehouse. The research is mainly focused on the development of the navigation VLC system, transmission of control
data information and decoding techniques.
As part of the communication system, trichromatic white LEDs are used as emitters and a-SiC:H/a-Si:H based
photodiodes with selective spectral sensitivity, are used as receivers. Through the modulation of the RGB LEDs, the
downlink channel establishes an infrastructure-to-vehicle link (I2V) and provides position information to the vehicle.
The decoding strategy is based on accurate calibration of the output signal. Characterization of the transmitters and
receivers, description of the coding schemes and decoding algorithms will be the focus of discussion in this paper.
Nowadays, Global Positioning Systems (GPS) are used everywhere for positioning and navigation. However, its use is not suitable in indoor environment, due to power budget constraints and the strong attenuation inside buildings. Therefore, indoors navigation takes advantage of other technologies to infer position. Recently, several Visible Light Positioning (VLP) systems have been reported. Among these technologies, Visible Light Communication (VLC) is one of the most promising, as its operation is based on the use of LED lights, currently widely used in the illumination solutions of most buildings. In this paper, we propose an indoor navigation system based on VLC in an industrial application for automated warehouses, where the navigation of autonomous vehicles (AVG) is supported by VLC. The proposed VLC system establishes bidirectional communication between the infrastructure and the guided vehicles. LED transmitters at the warehouse ceiling support downlink data transmission from the Infrastructure to Vehicle (I2V). This channel provides positioning and navigation of the vehicles, as well as transmission of dedicated messages related to the requested tasks of the management warehouse system to the autonomous vehicles. The uplink channel from the Vehicle to the Infrastructure (V2I) is used to acknowledge the requested tasks and transmit updates on the concluded tasks. Optical transmitters are tri-chromatic white LEDs with a wide angle beam. The characterization of the optical transmitter system is done through MatLab simulations for path loss and VLC channel gain prediction, using the Lambertian model for the LED light distribution. Dedicated receivers based on a-SiC:H/a-Si:H photodiodes with selective spectral sensitivity are used to record the transmitted signal. The decoding strategy is based on accurate calibration of the output signal.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.