This paper presents research activities carried out at VTT Technical Research Centre of Finland in the field of hybrid
integration of optics, electronics and mechanics. Main focus area in our research is the manufacturing of electronic
modules and product structures with printed electronics, film-over-molding and polymer sheet lamination technologies
and the goal is in the next generation of smart systems utilizing monolithic polymer packages. The combination of
manufacturing technologies such as roll-to-roll -printing, injection molding and traditional component assembly is called
Printed Hybrid Systems (PHS).
Several demonstrator structures have been made, which show the potential of polymer packaging technology. One
demonstrator example is a laminated structure with embedded LED chips. Element thickness is only 0.3mm and the
flexible stack of foils can be bent in two directions after assembly process and was shaped curved using heat and
pressure. The combination of printed flexible circuit boards and injection molding has also been demonstrated with
several functional modules. The demonstrators illustrate the potential of origami electronics, which can be cut and folded
to 3D shapes. It shows that several manufacturing process steps can be eliminated by Printed Hybrid Systems
technology. The main benefits of this combination are small size, ruggedness and conformality. The devices are ideally
suited for medical applications as the sensitive electronic components are well protected inside the plastic and the
structures can be cleaned easily due to the fact that they have no joints or seams that can accumulate dirt or bacteria.
Optical designers can realize the required optical functions with a large variety of different designs. In order to obtain the
needed functionality at the lowest possible cost, different design and assembly options will need to be taken into account.
Additionally, the complexity of the decision situation is increased by the different production technologies which are
available. The EC-sponsored project Production4μ is developing solutions that help optics designers to simplify and
speed up this decision process. In this article, two different tools for calculating optics production costs are presented.
The first one is a simplistic tool made for calculating the production costs of plastic optical parts. The second is a more
complex tool that is able to do a detailed cost analysis for a complete process chain. This versatile tool can be used to
calculate the costs associated to three main optical production methods: glass grinding, glass moulding and plastic
injection moulding. Design For Manufacturability (DFM) issues are emphasized by drawing conclusions on which
design characteristics have the largest influence on piece part cost. Practical applications of cost models are presented by
relating optical design choices and expected performance to production cost with case studies.
A microscope add-on device to a 1.3 Mpix camera phone was selected as a demonstrator system for testing inmould
integration of electronic substrates and plastic optics. Optical design of the device was quite challenging due to the fact
that illumination system needed to be integrated with a double aspheric singlet lens structure as a single optical piece.
The designed imaging lens resolution was adequate to resolve 10 &mgr;m features with a mobile phone camera. In the
illumination optics the light from LEDs embedded into the plastic structure was collected and guided to the surface that
was imaged. Illumination was designed to be uniform and adequately bright to achieve high resolution images with the
camera phone. Lens mould design was tested by using injection moulding simulation software. The critical mould
optical surfaces were designed as separate insert parts. Final shapes producing lens surfaces were tooled by diamond
turning on nickel coatings. Electronic circuit board inserts with bonded bare LED chips and packaged SMD LEDs were
assembled to the mould and then overmoulded with optical grade PMMA. Experiences proved that inmould integration
of electronic substrates, bare LED chips and high resolution imaging optics in injection-compression moulding process
is feasible. The yield of embedded packaged and also bare chip components was close to 100% after the right injection
moulding process parameters were found. Prototype add-on system was characterized by testing the imaging properties
of the device with a camera phone.
Kimmo Keränen, Toni Saastamoinen, Jukka-Tapani Mäkinen, Mikko Silvennoinen, Ilpo Mustonen, Pasi Vahimaa, Timo Jääskeläinen, Ari Lehto, Anneli Ojapalo, Marcus Schorpp, Pekka Hoskio, Pentti Karioja
A red VCSEL illuminator module demonstrator was manufactured by injection moulding integration. A red VCSEL
chip was first attached to a simple FR4 substrate, which contains bonding pads and conducting wires for the VCSEL
chip attachment and electrical driving. The substrate was then placed as an insert in an injection mould. The VCSEL
chip shielding and optics formation was made in a one-step injection moulding process. The used optical thermoplastic
in the processing was polycarbonate (PC). The pursued optical function of the single spherical surface attained in the
moulding was to collimate the emitted red light (&lgr;=664.5 nm) from the VCSEL chip.
The main critical issue related to the manufacturing of the illuminator module in the injection moulding process was the
durability of bonding wire contacts. A single 25 &mgr;m diameter gold wire was used in wire bonding in order to create the
upper contact to the chip. The lower contact was processed by attaching the chip to the substrate using conductive
epoxy. A test series of 20 modules using FR4 substrate materials were produced. The number of fully operative modules
was 12 resulting total module yield of 60%. The main reason for a non-operative module was loosening of the bonding
wire during the injection moulding process. The bonding wire durability in the moulding process can be improved by
using glob-top shielding of the VCSEL device before injection moulding and using a lower holding pressure in the
injection moulding process.
A diamond turned insert was used in the mould in order to create a high quality lens surface on the top of the VCSEL
chip. The tower average length after one iteration round by mould modification was 8.676 &mgr;m, so the measured value
was on average 20 &mgr;m larger than nominal value. The measured RMS roughness of the processed lens surface was 5 ...
7 nm and the radius -3.23 ... 3.83 mm. The radius of the lens and the length of the tower varied depending of the used
process parameters.
The manufactured illumination module can be integrated with a CMOS image matrix sensor in order to form a compact
hologram reader system. The injection moulding integration principle seems to be very promising method to
manufacture intelligently integrated and cost-effective optoelectronic products according to experience with this
demonstrator.
Technologies to design and fabricate high-bit-rate chip-to-chip optical interconnects on printed wiring boards (PWB) are studied. The aim is to interconnect surface-mounted component packages or modules using board-embedded optical waveguides. In order to demonstrate the developed technologies, a parallel optical interconnect was integrated on a standard FR4-based PWB. It consists of 4-channel BGA-mounted transmitter and receiver modules as well as of four polymer multimode waveguides fabricated on top of the PWB using lithographic patterning. The transmitters and receivers built on low-temperature co-fired ceramic (LTCC) substrates include flip-chip mounted VCSEL or photodiode array and 4x10 Gb/s driver or receiver IC. Two microlens arrays and a surface-mounted micro-mirror enable optical coupling between the optoelectronic device and the waveguide array. The optical alignment is based on the marks and
structures fabricated in both the LTCC and optical waveguide processes. The structures were optimized and studied by the use of optical tolerance analyses based on ray tracing. The characterized optical alignment tolerances are in the limits of the accuracy of the surface-mount technology.
A hermetic fibre pigtailed laser module utilizing passive device alignment on a low temperature co-fired ceramics (LTCC) substrate is demonstrated. The 3-dimensional shape of the laminated and fired ceramic substrate provides the necessary alignment structures including holes, grooves and cavities for the laser to fibre coupling. The achieved passive alignment accuracy allows high coupling efficiency realizations of multi-mode fibre pigtailed laser modules. The ceramic substrate is intrinsically hermetic and it opens up a possibility to produce cost efficient hermetic packaging.
In our concept hermetic sealing is produced by utilizing Kovar frame, which is soldered to an LTCC substrate. Kovar frame has a hole for fibre feed-trough and a hermetic glass-metal sealing between fibre and frame is processed using glass preform.
The heart of the module is a power laser diode chip, which can produce several watts of continuous power. The module, however, can be finally used as a transmitter in a laser pulse time-of-flight distance sensor and in this application it can be overdriven by a factor of 10. This means that the peak optical power in the pulses can be several tens of watts. The laser chip allows this kind of overdriving due to the fact that the duty factor in the operation is only 0.0001 at 2 kHz pulsing frequency.
Optical coupling efficiency of the multi-mode laser system was simulated using optical systems simulation software. The nominal coupling efficiency between 210 μm x 1μm stripe laser and 200/220 μm step index fibre (NA=0.22) was 0.65. The simulated coupling efficiency was verified by prototype realization and characterization. The measured average coupling efficiency of the hermetically sealed prototypes was 0.39. The coupling efficiencies of prototypes varied from 0.14 to 0.64.
Leak rate of 1 x 10-7 [atm x cm3/s] was measured in the helium leak tests for the final prototype module, when the module was tested according to MIL-STD-883D method 1014.9 specification. Leak rate for the module using a buffer stripper fibre without a rubber guard tube was 3 x 10-9 [atm x cm3/s]. The background helium level before and after the
tests was less than 3 x 10-10 [atm x cm3/s]. This clearly higher leak rate in the final module leak measurement is mainly due to the absorbed helium to the fibre polymer buffer layer and rubber guard tube in the pressurization process. Measurements show that the implemented module is hermetic.
Cost-of-ownership modelling was performed starting from low production volume up to production of 10 million good modules per year. Module production cost was estimated through COO modelling. Modelling forecasted that the module production can be lower than 10 EUR in high volume production.
A network for prototyping imaging lenses using injection moulding was established in Finland. The network consists of several academic and industrial partners capable of designing, processing and characterising imaging lenses produced by injection moulding technology. In order to validate the operation of the network a demonstrator lens was produced. The process steps included in the manufacturing were lens specification, designing and modelling, material selection, mould tooling, moulding process simulation, injection moulding and characterisation. A magnifying imaging singlet lens to be used as an add-on in a camera phone was selected as a demonstrator. The design of the add-on lens proved to be somewhat challenging, but a double aspheric singlet lens design fulfilling nearly the requirement specification was produced. In the material selection task the overall characteristics profile of polymethyl methacrylate (PMMA) material was seen to be the most fitting to the pilot case. It is a low cost material with good moulding properties and therefore it was selected as a material for the pilot lens.
Lens mould design was performed using I-DEAS and tested by using MoldFlow 3D injection moulding simulation software. The simulations predicted the achievable lens quality in the processing, when using a two-cavity mould design. First cavity was tooled directly into the mould plate and the second cavity was made by tooling separate insert pieces for the mould. Mould material was steel and the inserts were made from Moldmax copper alloy. Parts were tooled with high speed milling machines. Insert pieces were hand polished after tooling. Prototype lenses were injection moulded using two PMMA grades, namely 6N and 7N. Different process parameters were also experimented in the injection moulding test runs. Prototypes were characterised by measuring mechanical dimensions, surface profile, roughness and MTF of the lenses. Characterisations showed that the lens surface RMS roughness was 30-50 nm and the profile deviation was 5 μm from the design at a distance of 0.3 mm from the lens vertex. These manufacturing defects caused that the measured MTF values were lower than designed. The lens overall quality, however, was adequate to demonstrate the concept successfully. Through the implementation of the demonstrator lens we could test effectively different stages of the manufacturing process and get information about process component weight and risk factors and validate the overall performance of the network.
A novel add-on device to a mobile camera phone has been developed. The prototype system contains both laser and LED illumination as well as imaging optics. Main idea behind the device is to have a small printable diffractive ROM (Read Only Memory) element, which can be read by illuminating it with a laser-beam and recording the resulting
datamatrix pattern with a camera phone. The element contains information in the same manner as a traditional bar-code, but due to the 2D-pattern and diffractive nature of the tag, a much larger amount of information can be packed on a smaller area. Optical and mechanical designs of the prototype device have been made in such a way that the system can be used in three different modes: as a laser reader, as a telescope and as a microscope.
Integration of high-speed parallel optical interconnects into printed wiring boards (PWB) is studied. The aim is a hybrid optical-electrical board including both electrical wiring and embedded polymer waveguides. Robust optical coupling between the waveguide and the emitter/detector should be achieved by the use of automated pick-and-place assembly. Different coupling schemes were analyzed by combining non-sequential ray tracing with Monte-Carlo tolerance simulation of misalignments. A modular demonstrator was designed based on three different kind of optical coupling schemes: butt-coupling and couplings based on microlens arrays and on micro ball lenses. The optical front-ends were implemented with PIN and flip-chip-VCSEL arrays as well as 10-Gb/s/channel electronics onto LTCC-based (low-temperature co-fired ceramic) transmitter and receiver modules, which were surface mounted on high-speed PWBs. An electrical simulation model was developed for the design of a VCSEL-based transmitter circuit. Polymer waveguides were fabricated on separate FR-4 boards to allow characterization of alignment tolerances with different waveguides. Optical and adhesion properties of several potential waveguide materials were characterized. The simulations and experiments suggest that, with optimized optomechanical structures and with low loss waveguides, it is possible to achieve acceptable total path loss and yield with the accuracy of automated assembly.
The modeling, realization and characterization of photonic module based on the use of Low Temperature Co-fired Ceramics (LTCC) technology is reported. The 3D modeling of the system provides possibility to optimize structures, materials and components in order to achieve optimal performance for the final product and still maintain reasonably low fabrication costs. The cost-effectiveness in the product can be further optimized using an iterative optimization process, in which the effect of module manufacturing tolerances and assembly process tolerances is simulated by a VisVSA Monte-Carlo simulation. The tolerance distributions produced by a VisVSA simulation are used as input parameters together with optical component tolerances in an ASAP Monte-Carlo simulation, in which the final module optical performance distribution in simulated production is obtained. The module cost, performance and optical performance limited yield is possible to define with this iterative process.
As an example of this kind of packaging modeling, we present a demonstrator module having a high-power multimode laser diode with a 1μm x 100μm emitting area coupled to a 62.5/125μm graded-index (NA=0.275) multimode fiber. The tolerance modeling results are verified by experimental characterization of the packaged prototypes. Measured coupling efficiencies were in good agreement with simulated ones, when the fiber NA was 0.2 or larger. The measured coupling efficiency, however, was 38% lower than simulated, when the fiber NA was 0.12. This was probably due to the laser mode structure difference between simulation model and reality. Coupling efficiency of 0.46 was obtained in a passively aligned demonstrator module, when the nominal value was 0.48.
Integration of high-speed parallel optical interconnects into printed wiring boards (PWB) is studied. The aim is a hybrid optical-electrical board including both electrical wiring and embedded polymer waveguides. Robust optical coupling between the waveguide and the emitter/detector should be achieved by the use of automated pick-and-place assembly. Different coupling schemes were analyzed by combining non-sequential ray tracing with Monte-Carlo tolerance simulation of misalignments. The simulations demonstrate that, with optimized optomechanical structures and with very low loss waveguides, it is possible to achieve acceptable total path loss and yield with the accuracy of automated assembly. A technical demonstrator was designed and realized to allow testing of embedded interconnects based on three different kind of optical coupling schemes: butt-coupling, and couplings based on micro-lens arrays and on micro-ball lenses. They were implemented with PIN and flip-chip-VCSEL arrays as well as 10-Gb/s/channel electronics onto LTCC-based (low-temperature co-fired ceramic) transmitter and receiver modules, which were surface mounted on high-speed PWBs. The polymer waveguides were on separate FR-4 boards to allow testing and characterization of alignment tolerances with different waveguides. With micro-lens array transmitter, the measured tolerances (±10 μm) were dominated by the thickness of the waveguides.
The prototyping process of miniaturized plastic imaging lens is described. The sequence is divided into five phases: specification, optics design, optomechanical design, manufacturing and characterization. During specification, the optical and mechanical requirements of the lens are defined. In the optical design phase, the lens is optimized, and a tolerance analysis is carried out. Simulation tools, especially, an image quality simulator, can be used to visualize and verify the performance of the design. Mechanical design is performed considering the geometrical specifications and optical tolerances of the system. In addition, stray light analysis is carried out to verify the optical performance of the optomechanics. Plastic optics are particularly vulnerable to stray light due to the integrated mountings, which provide additional paths for unwanted light. If the prototype is used for preliminary performance evaluation of a future product, the differences between prototype and mass manufacturing methods need to be considered carefully. After the lenses are manufactured they are characterized, and the experimental results are compared with the original specifications and estimations obtained from the previous design verification simulations. New error analysis simulations can be performed in order to pinpoint faults in manufactured modules. If the performance of the prototype is not sufficient, a new prototyping iteration circle is needed. The whole process is described and analyzed using a miniature, plastic imaging lens as an example, but it can also be applied to other optical prototyping tasks.
In this paper, an imaging system simulation tool is presented. With the tool, it is possible to simulate the performance (quality) of an imaging system. Furthermore, the system allows optimization of the lens system for a given image sensor. Experiments have shown that the tool is useful in actual lens design.
Lithographic patterning of organic-inorganic hybrid materials processed by the use of sol-gel technology allows for the generation of waveguide structures at low temperatures onto polymer or ceramic substrates. In addition, sol-gel technology provides the possibility to process precision structures, such as, grooves and cavities, which are applicable for the passive alignment of photonic devices. This provides the possibility for the realization of mass-producible photonic circuits onto large-area substrates. At the moment, the most potential applications are systems based on then use of multimode waveguide structures. Actually, when utilizing sol-gel technology, the challenge is how to process homogenous, low-loss and high-aspect-ratio structures. In addition, when aiming to highly mass-producible multimode modules, the key issue is the alignment of photonic devices preferably by the use of passive precision structures. In the future, when the systems need to be more complicated, the modeling of systems requires sophisticated 3D modeling tools. In this paper, the processing of multimode structures with sol-gel technologies is described, and the characterization results of prototype devices are reported. In addition, molding and cofiring technologies potentially applicable for the hybrid integration of photonic modules are reviewed. Finally, the future research aims for the commercialization of photonic modules based on the use of sol-gel technologies are envisioned.
KEYWORDS: Transmitters, Sensors, Monte Carlo methods, Scattering, Receivers, Vertical cavity surface emitting lasers, Computer simulations, Diffraction, Ray tracing, Data modeling
We studied the feasibility of two different topologies for board-to-board free-space optical interconnects: a unidirectional ring and a beacon-type star. In each node of the ring bus, the incident VCSEL beam is split both to the next node and to the detector. The star consist of beacon-like nodes based on cones; in the transmitter it reflects the VCSEL beam into all directions on the PCB plane and in the receivers it reflects the incoming beams towards the detector. 3-D models of the optical systems were optimized considering realistic mechanical requirements and tolerances of a typical PCB system. The power budgets and optomechanical tolerances were analyzed by ray-trace simulations. With four nodes and total length of 80 cm, the simulated path loss of the ring bus was 27 dB. At the corresponding 40-cm range, the beacon link had 38 dB signal attenuation. At the same bit-rate, the ring bus provides longer separation between nodes whereas the beacon system allows more nodes. The ring bus also enables parallel interconnects, but the alignment requirements would be very tight. The beacon link was demonstrated. The resulted attenuation was 10 dB higher than in the simulations, mostly due to losses in the receiver optics.
We have used non-sequential ray tracing as a simulation tool to model micro-optical systems. Ray tracing can be used to model micro-optical systems as long as the wave nature of the light is not dominant. Non-sequential ray tracing takes inherently into account the aberrations of the optical system and enables the modeling of scattering and stray light effects. We have used measured scattering properties of a hybrid-glass lens material to model scattering in an example imaging micro-optical system. We have also used non-sequential ray tracing to model a straight and a bent light-guide that can be used as chemical sensors. Modeling estimates the amount of light going through the optical system to the detector and shows the paths of the rays leaking out from the system.
KEYWORDS: Sensors, Monte Carlo methods, Transmitters, Scattering, Receivers, Infrared radiation, Ray tracing, Optical simulations, Free space optics, Computer simulations
Free-space optical transmission provides large bandwidth, small size, lightweight, low cost and good security. Diffuse IR link configuration is also rather robust against shadowing. Its disadvantages are, however, bandwidth degradation due to multipath dispersion, sensitivity to ambient light and limited transmission distance due to the limitations of optical power budget. To specify the bandwidth and power budget requirements of the diffuse link, we performed ray-trace simulations for different room geometries and dimensions, and different transmitter and receiver locations. We considered both diffuse and specular reflections as well as shadowing and reflection effects due to blocking objects, such as furniture. The simulations were verified by analytically calculating the impulse response in simple diffuse reflection geometry. We also analyzed stray light induced shot noise effects. Furthermore, we simulated some properties of a quasi-diffuse link comprising of multi- beam transmitters with restricted beam divergences as well as detectors with narrow fields of view. Based on the study, novel Monte Carlo ray-tracing software packages, such as ASAP, can be used for diffuse link multipath dispersion and optical power path loss analysis. Ray tracing can also be used for parallel channel crosstalk and stray light analysis. Potential applications for these system are high- bit-rate wireless LANs and free-space optical interconnects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.