We have demonstrated that a classical metamaterial nanostructure, a two-dimensional array of plasmonic metamolecules supported on flexible nanowires, can be driven to a state possessing all the key features of a continuous time crystal - an eagerly-sought state of matter with properties periodic in time, rather than in space. The phenomenon points to the possibility of a new mechanism for the synchronization of noise-driven, linear oscillators based upon non-reciprocal coupling (non-Hamiltonian optical forces) between metamolecules.
By coupling near-infrared electromagnetic and MHz-frequency flexural resonances one can dramatically enhance the magnitude of actuation and optical response in dynamically reconfigurable nanostructures. We review recent work on metamaterials driven by ponderomotive optical forces at microwatt power levels and by low-intensity acoustic vibrations, which manifest strong opto-mechanical nonlinearity, asymmetry and bistability.
The resolution of conventional microscopy is limited to a half of the wavelength of light. We report on recent advances in applications of deep learning and topologically structured light to far-field non-destructive imaging with deep subwavelength resolution and to picometric metrology.
We reports on recent advances in applications of deep learning and topologically structured light to far-field non-destructive imaging with deep subwalength resolution and picometric metrology
We review recent advances in the physics and technology of plasmonic and dielectric nanomechanical metamaterials, wherein optical and mechanical resonances can be coupled to provide a plethora of dynamic photonic functionalities. External electric, magnetic, thermal, acoustic and optical stimuli drive pico/nanometric displacements of the metamaterial building blocks, modulating optical properties at MHz frequencies.
KEYWORDS: Metamaterials, Electromagnetism, Modulation, Switching, Electro optics, Magneto-optics, Nonlinear optics, Near field, Active optics, Near field optics
The nanomechanical metamaterials offer the possibilities of manipulating exotic electromagnetic properties on demand. Such metamaterial exhibit profound electro-optical, magneto-optical and acousto-optical switching and modulation, optical nonlinearity for modulating light with light, asymmetric transmission, and tunable chirality. The electromagnetic properties of nanomechanical metamaterial structure strongly depend on the spatial arrangement of its building blocks. By constructing metamaterials on elastically deformable scaffolds we can dynamically control the nanoscale spacing among constituent elements across the entire metamaterial array with external stimuli. Based on this approach, we use electrostatic, Lorentz, near field optical forces and sound to drive high-contrast, high-speed active tuning, modulation and switching of photonic metamaterial properties and to deliver exotic electromagnetic properties. We also report a novel approach to the visualization of nanoscale movements of picometre scale Brownian and stimulation movements of the individual building blocks of these functional metamaterials.
We introduce a non-intrusive far-field optical microscopy, which reveals the fine structure of an object through its far-field scattering pattern under illumination with topologically structured light containing deeply subwavelength singularity features. The object is reconstructed by a neural network trained on a large number of scattering events. We demonstrate resolving powers two orders of magnitude beyond the conventional “diffraction limit” of λ/2.
There is growing interest and technological opportunity in nanomechanics and the fundamentals of nano- to pico-scale dynamics, which derive from the fact that electromagnetic and quantum forces become stronger as the dimensions of objects decrease, competing with elastic forces at sub-micron scales; while movements become faster as mass decreases, achieving Gigahertz bandwidth at the nanoscale.
We report on a novel approach to the visualization of such movements that is based on the detection of secondary electrons and photons emerging from the interaction of a focused electron beam with moving components of nano-objects. The technique extends the static (zero-frequency) imaging capabilities of a conventional scanning electron microscope to enable hyperspectral spatial mapping of fast (MHz-GHz) thermal and externally-driven nano- to pico-scale motion in nanostructures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.