The super-sensitivity of wafer critical dimensions (CDs) to mask CDs at low k1, known as the Mask Error Enhancement Factor (MEEF) drives the need for increasingly tighter mask CD control. In addition, the accuracy of the model based optical proximity correction (OPC) used to compensate systematic lithographic errors is partially dependent on a stable mask CD error signature that expands mask CD control requirements over multiple feature types.
This paper presents the need for improved quantification and monitoring of mask CD signatures that includes CD characteristics relevant to OPC model calibration. It also introduces and discusses a new method to characterize, quantify, and control mask signatures in a mask manufacturing environment to limit the impact of mask CD variations on the OPC model validity. Multiple approaches to implementing this "golden curve" method are discussed in terms of their advantages and disadvantages.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.