We investigated the interaction of a laser-induced cavitation bubble with an elastic tissue model by high-speed photography with up to 5 Mill. frames/sec. The elastic material consisted of a transparent polyacrylamide (PAA) gel whose elastic properties can be controlled by modifying the water content to mimic various biological tissues. The elastic modulus E of the PAA sample was varied between 0.017 and 2 MPa. The dimensionless bubble-boundary distance γ(distance between laser focus and sample boundary, scaled by the maximum bubble radius) was for each value of E varied between γ = 0 and γ = 2.2. In this parameter space, we determined the jetting behavior, jet velocity, jet penetration into the PAA sample and bubble- induced removal of PAA material. The jetting behavior varies between unidirectional jets towards or away from the boundary, and formation of an annular jet which results in bubble splitting and subsequent formation of two very fast axial jets flowing simultaneously towards the boundary and away from it. General principles of the formation of annular and axial jets are discussed which allow to interpret the complex dynamics. The liquid jet directed away form the boundary reaches a maximum velocity between 300 m/s and 600 m/s (depending on E) while the peak velocity of the jet directed towards the boundary ranges between 400 m/s and 960 m/s. The peak velocities near an elastic material are 10 times higher than close to a rigid boundary. The liquid jet penetrates PAA samples with an elastic modulus in the intermediate range 0.12 < E < 0.4 MPa. In this same range of elastic moduli and for small γ-values, PAA material is ejected into the surrounding liquid due to the elastic rebound of the sample surface that was deformed during bubble expansion. The surface of the PAA sample is, furthermore, lifted during bubble collapse when a region of low pressure develops between bubble and sample. For stiffer boundaries, only an axial liquid jet towards the boundary is formed, similar to the bubble dynamics next to a rigid wall. For softer sample, the liquid jet is directed away from the boundary, and material is torn off the PAA sample during bubble collapse, if the bubble is produced close to the boundary. These processes play an important role for the efficiency and side effects of pulsed laser surgery inside the human body.
Free running Er:YAG lasers are used for a precise tissue ablation in various clinical application as, for example, laser skin resurfacing. The ablated material is ejected from the tissue surface in the direction of the incident laser beam. We investigated the influence of the shielding by the ablation plume on the energy deposition into the irradiated sample because it influences the ablation dynamics and the amount of ablated material. The shielding was investigated for gelatin with different water content, skin and water. Laser flash photography combined with a dark field Schlieren technique was used to visualize the gaseous and liquid ablation products. The distance traveled by the ablating laser beam through the ablation plume was evaluated from the photographs for various times after the beginning of the laser pulse. The temporal evolution of the transmission through the ablation plume was probed using a second free running Er:YAG laser beam directed parallel to the sample surface. The ablation dynamics shows two phases: Vaporization and material ejection. The photographic observations give evidence for a phase explosion to be the driving mechanism for the material ejection. The photographic observations give evidence for a phase explosion to be the driving mechanism for the material ejection. The transmission is only slightly reduced by the vapor plume, but it decreases by 25-50% when the ejected material passes the probe beam. The laser energy deposited into the sample amounts to only 61% of the incident energy for gelatin samples with 90% water content and 86% for skin samples. The shielding must therefore be considered in modeling the ablation dynamics and determining the dosage for clinical applications.
We have conducted time-resolved studies of optical breakdown produced by the irradiation of water using 6 ns Nd:YAG laser pulses of 1064 nm and 532 nm wavelength focused at a numerical aperture of NA=0.9. We determined pulse energy threshold values for plasma formation to be 1.89 (mu) J and 18.3 (mu) J for 532 and 1064 nm irradiation, respectively. These energy thresholds correspond to irradiance thresholds of 0.77 x 109 W/mm2 for 532 nm irradiation and 1.87 x 109 W/mm2 for 1064 nm irradiation. For pulse energies 1x, 2x, 5x, and 10x above threshold, we determined the length of the laser induced plasma, the propagation speed and peak pressures of the emitted shock wave, and the mechanical energy dissipated by subsequent cavitation bubble formation, growth and collapse. This analysis demonstrates that both the breakdown threshold as well as the conversion efficiency of the incident laser energy into mechanical energy is smaller for irradiation at 532 nm than for 1064 nm. These results are consistent with laser parameters employed for a variety of nanosecond pulsed micro irradiation procedures using 1064 nm and 532 nm radiation focused by microscope objectives with large numerical apertures (NA >0.8). These results suggest that laser- induced breakdown is the primary mechanism that drives a variety of cellular micro manipulation techniques which employ nanosecond visible and near-infrared laser pulses.
IR laser ablation of skin is accompanied by acoustic signals the characteristics of which are closely linked to the ablation dynamics. A discrimination between different tissue layers, for example necrotic and vital tissue during laser burn debridement, is therefore possible by an analysis of the acoustic signal. We were able to discriminate tissue layers by evaluating the acoustic energy. To get a better understanding of the tissue specificity of the ablation noise, we investigated the correlation between sample water content, ablation dynamics, and characteristics of the acoustic signal. A free running Er:YAG laser with a maximum pulse energy of 2 J and a spot diameter of 5 mm was used to ablate gelatin samples with different water content. The ablation noise in air was detected using a piezoelectric transducer with a bandwidth of 1 MHz, and the acoustic signal generated inside the ablated sample was measured simultaneously ba a piezoelectric transducer in contact with the sample. Laser flash Schlieren photography was used to investigate the expansion velocity of the vapor plume and the velocity of the ejected material. We observed large differences between the ablation dynamics and material ejection velocity for gelatin samples with 70% and 90% water content. These differences cannot be explained by the small change of the gelatin absorption coefficient, but are largely related to differences of the mechanical properties of the sample. The different ablation dynamics are responsible for an increase of the acoustic energy by a factor of 10 for the sample with the higher water content.
In burn surgery necrotic tissue has to be removed prior to skin grafting. Tangential excision causes high blood loss and destruction of viable tissue. Pulsed IR laser ablation can overcome these problems because of its high precision and the superficial coagulation of the remaining tissue. We realized an acoustic on-line monitoring system for a selective removal of necrotic tissue that is based on the detection of the energy of the acoustic signal produced during ablation. We developed a PC based system for data acquisition and real-time data analysis running at laser repetition rates of more than 30 Hz, and studied free- running Er:YAG laser ablation of burned skin and stacked gelatin samples which served as reproducible tissue models. Spectral analysis of the ablation noise showed that the optimum tissue specificity of the acoustic energy can only be achieved if the bandwidth of the acoustic transducer range up to more than 300 kHz. We were able to detect the boundary between gelatin layers of different water content by applying a threshold criterion for the relative increase of the acoustic energy with respect to the first laser pulse at each ablation site. Healthy and burned parts of skin samples as well as necrotic and viable tissue layers in second degree burns could be discriminated, in agreement with the result of histologic examinations. Superficial vascular structures could be distinguished fro surrounding burned tissue with good spatial resolution.
In burn surgery necrotic tissue has to be removed prior to grafting. Tangential excision causes high blood loss and destruction of viable tissue. Pulsed infrared laser ablation can overcome both problems because of its high precision and the superficial coagulation of the remaining tissue. We investigated the ablation noise to realize an acoustic feedback system for a selective removal of necrotic tissue. We studied free-running Er:YAG laser ablation of gelatin and burnt skin. Acoustic signals were detected by a condenser microphone and a piezoelectric airborne transducer. Tissue discrimination was based on the evaluation of the normalized acoustic energy. The normalized acoustic energy differs significantly between gelatin samples of different water content and between necrotic and vital tissue. The normalized acoustic energy is a suitable parameter for the discrimination between necrotic and vital tissue.
The influence of spherical aberrations on laser-induced plasma formation in water by 6-ns Nd:YAG laser pulses of 1064 nm wavelength was investigated. Experiments and numerical calculations were carried out for focusing angles similar to those used for intraocular microsurgery. Wave form distortions of 5.5 lambda and 18.5 lambda between the optical axis and the 1/e2 irradiance values of the laser beam were introduced by replacing laser achromats in the delivery system by plano- convex lenses. Aberrations of 18.5 lambda led to an increase of the energy threshold by a factor of 8.5. The threshold irradiance calculated using the diffraction limited spot size was 10 times increased as compared to the case of minimized aberrations and 48 times larger than the actual threshold. The threshold calculated with the measured focus diameter was, on the other hand, reduced by a factor of 35. This reduction is due to the presence of hot spots in the focal region of the aberrated laser beam. In these hot spots, the threshold irradiance is probably unchanged, but the threshold value is reduced when averaged over the whole measured diameter of the beam waist. The determination of breakdown threshold in the presence of aberrations leads, hence, to strongly erroneous results. In the presence of aberrations, the plasmas are up to 3 times longer and the transmitted energy is 17 - 20 times larger than without aberrations. Aberrations can thus strongly compromise the precision and safety of intraocular microsurgery where they may arise through the use of inappropriate contact lenses, tilting of the lens, and oblique light passage through the ocular media. They can further account for a major part of the differences in breakdown threshold and plasma transmission values reported in previous investigations.
Nonlinear absorption through laser-induced breakdown (LIB) offers the possibility of localized energy deposition in linearly transparent media and thus of non-invasive surgery inside the eye. The general sequence of events--plasma formation, stress wave emission, cavitation--is always the same, but the detailed characteristics of these processes depend strongly on the laser pulse duration. The various aspects of LIB are reviewed for pulse durations between 80 ns and 100 fs, and it is discussed, how their dependence on pulse duration can be used to control the efficacy of surgical procedures and the amount of collateral effects.
We investigated the acoustic signal of Er:YAG laser ablation in a gaseous environment. The high absorption coefficient of water at the laser wavelength of 2.94 micrometer leads to a small penetration depth of the Er:YAG laser pulses into tissue. The deposition of laser energy in a thin layer at the tissue surface causes a rapid evaporization of tissue water. The resulting tissue removal is used, for example, in laser skin resurfacing. The explosive evaporation of the tissue leads to an acoustic signal. We investigated the generation process of the signal caused by free-running laser pulses and its characteristic parameters in the time and frequency domain in correlation to the tissue and laser parameters with the aim to identify different tissues or tissue layers by analyzing the acoustic signal. Porcine skin and gelatin probes were ablated. Acoustic signals up to 1 MHz were measured using a condenser microphone and a piezoelectric airborne transducer. Schlieren photography was performed simultaneously to the acoustic investigations to visualize gaseous and condensed ablation products. We found that the high frequency content of the acoustic spectrum is due to shock waves created by each of the first laser spikes. Later in the laser pulse the acoustic signal is dominated by lower frequency components, because the generation of the high frequency components is inhibited by the interaction of the radiation with the ablation plume. The acoustic signature of free-running Er:YAG laser ablation seems to be particularly tissue specific during the first part of the laser pulse when the radiation interacts directly with the tissue.
During optical breakdown, the energy delivered to the sample is either transmitted, reflected, scattered, or absorbed. The absorbed energy can be further divided into the energy required to evaporate the focal volume, the energy radiated by the luminescent plasma, and the energy contributing to the mechanical effects such as shock wave emission and cavitation. The partition of the pulse energy between these channels was investigated for 4 selected laser parameters (6 ns pulses of 1 and 10 mJ, 30 ps pulses of 50 (mu) J and 1 mJ, all at 1064 nm). The results indicated that the scattering and reflection by the plasma is small compared to plasma transmission. The plasma absorption can therefore be approximated by A approximately equals (1-T). The ratio of the shock wave energy and cavitation bubble energy was found to be approximately constant (between 1.5:1 and 2:1). For a more comprehensive study of the influence of pulse duration and focusing angle on the energy partition, we therefore restricted our measurements to the plasma transmission and the cavitation bubble energy. The bubble energy was used as an indicator for the total amount of mechanical energy produced. We found that the plasma absorption first decreases strongly with decreasing pulse duration, but increases again for pulses shorter than 3 ps. The conversion of the absorbed energy into mechanical energy is approximately equal to 90% with ns-pulses at large focusing angles. It decreases both with decreasing focusing angle and pulse duration (to less than or equal to 15% for fs-pulses). The disruptive character of plasma-mediated laser surgery is therefore reduced with ultrashort laser pulses.
We investigated the transmission, scattering and reflection of plasmas produced in water by Nd:YAG laser pulses of 6 ns and 30 ps duration. The transmission measurements comprise a large energy range at a wavelength of 1064 nm and various focusing angles between 1.7 degrees and 22 degrees. This parameter range covers the parameters used for intraocular microsurgery, but also allows to asses the influence of self-focusing on plasma shielding, which is only relevant at small focusing angles. We found that most of the laser light is either absorbed or transmitted; scattering and reflection amount to only a few percent of the incident laser energy. The transmission is considerably higher for ps pulses than for ns pulses, regardless of the focusing angle. The plasma transmission increases with decreasing focusing angle. Self- focussing, which occurs at focusing angles below 2, leads to a further increase of transmission. The efficacy of plasma- mediated intraocular laser surgery is higher with 6-ns pulses than with 30-ps pulses, because with the ns pulses nearly 50 percent of the laser pulse energy is absorbed already at threshold, whereas it is only 8 percent with the ps-pulses. The small fractional energy deposition with ps pulses together with a low energy threshold for breakdown can, however, be useful for the generation of very fine tissue effects. Structures beyond the laser focus are 2-6 times more effectively shielded from laser radiation by plasmas generated with ns pulses than by ps plasmas. The transmitted energy at equal normalized energy E/Eth is, nevertheless, always by more than a factor of 8 less than for ps-pulses because of their lower energy threshold for plasma formation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.