In the GRAVITY+ project, GRAVITY is presently undergoing a series of upgrades to enhance its performance, add wide field capability and thereby expand its sky coverage. Some aspects of these improvements have already been implemented and commissioned by the end of 2021, making them accessible to the community. The augmentation of sky coverage involves increasing the maximum angular separation between the celestial science object and the fringe tracking object from the previous 2 arcseconds (limited by the field of view of the VLTI) to 20 – 30 arcseconds (constrained by atmospheric conditions during observation). Phase 1 of GRAVITY+ Wide utilizes the earlier PRIMA Differential Delay Lines to compensate for the optical path length variation between the science and fringe tracking beams throughout an observation. In phase 2, we are upgrading the existing beam compressors (BC) to integrate optical path length difference compensation directly into the BC. This modification eliminates five optical reflections per beam, thereby enhancing the optical throughput of the VLTI–GRAVITY system and the bandwidth of the vibrational control. We will present the implementation of phase 2 and share preliminary results from our testing activities for GRAVITY+ Wide.
The GRAVITY+ project consists of instrumental upgrades to the Very Large Telescope Interferometer (VLTI) for faint-science, high-contrast, milliarcsecond interferometric imaging. As an integral part of the GRAVITY+ Adaptive Optics (AO) architecture, the Wavefront Sensor (WFS) subsystem corrects image distortions caused by the turbulence of Earth's atmosphere. We present the opto-mechanical design of the WFS subsystem and the design strategies used to implement two payloads positioned diagonally opposite each other - Natural Guide Star (NGS) and Laser Guide Star (LGS) - within a single compact design structure. We discuss the implementation of relative motions of the two payloads covering their respective patrol fields and a nested motion within the LGS Payload covering the complete Sodium layer profile in the Earth's atmosphere.
We present the Wavefront Sensor units of the Gravity Plus Adaptive Optics (GPAO) system, which will equip all 8m class telescopes of the VLTI and is an instrumental part of the GRAVITY+ project. It includes two modules for each Wavefront Sensor unit: a Natural Guide Star sensor with high-order 40×40 Shack-Hartmann and a Laser Guide Star 30×30 sensor. The state-of-the-art AO correction will considerably improve the performance for interferometry, in particular high-contrast observations for NGS observations and all-sky coverage with LGS, which will be implemented for the first time on VLTI instruments. In the following, we give an overview of the Wavefront Sensor units system after completion of their integration and characterization.
The GRAVITY instrument has transformed the field of near-infrared interferometry and is redefining the limits of ground-based observations. In Galactic Center observations, this is shown by routinely achieving below 50 μas uncertainty on astrometric measurements within a 5-minute exposure and detecting stars fainter than 19th magnitude. Nevertheless, systematic effects are still limiting the instrument's performance. In this talk, I will introduce two observing modes to overcome these limitations: Pupil modulation to improve the astrometry and metrology attenuation to overcome SNR limitations. I will detail these two modes and show how significant the improvements are on examples of on-sky data.
Performances of an adaptive optics (AO) system are directly linked with the quality of its alignment. During the instrument calibration, having open loop fast tools with a large capture range are necessary to quickly assess the system misalignment and to drive it towards a state allowing to close the AO loop. During operation, complex systems are prone to misalignments (mechanical flexions, rotation of optical elements, etc.) that potentially degrade the AO performances, creating a need for a monitoring tool to tackle their driftage. In this work, we first present an improved perturbative method to quickly assess large lateral errors in open loop. It uses the spatial correlation of the measured interaction matrix of a limited number of 2D spatial modes with a synthetic model. Then, we introduce a novel solution to finely measure and correct these lateral errors via the closed loop telemetry. Non-perturbative, this method consequently does not impact the science output of the instrument. It is based on the temporal correlation of 2D spatial frequencies in the deformable mirror commands. It is model-free (no need of an interaction matrix model) and sparse in the Fourier space, making it fast and easily scalable to complex systems such as future extremely large telescopes. Finally, we present some results obtained on the development bench of the GRAVITY+ extreme AO system (Cartesian grid, 1432 actuators). In addition, we show with on-sky results gathered with CHARA and GRAVITY/CIAO that the method is adaptable to non-conventional AO geometries (hexagonal grids, 60 actuators).
In the context of the GRAVITY+ upgrade, the adaptive optics (AO) systems of the GRAVITY interferometer are undergoing a major lifting. The current CILAS deformable mirrors (DM, 90 actuators) will be replaced by ALPAO kilo-DMs (43×43, 1432 actuators). On top of the already existing 9×9 Shack-Hartmann wavefront sensors (SH-WFS) for infrared (IR) natural guide star (NGS), new 40×40 SH-WFSs for visible (VIS) NGS will be deployed. Lasers will also be installed on the four units of the Very Large Telescope to provide a laser guide star (LGS) option with 30×30 SH-WFSs and with the choice to either use the 9×9 IR-WFSs or 2×2 VIS-WFSs for low order sensing. Thus, four modes will be available for the GRAVITY+ AO system (GPAO): IR-NGS, IR-LGS, VIS-NGS and VIS-LGS. To prepare the instrument commissioning and help the observers to plan their observations, a tool is needed to predict the performances of the different modes and for different observing conditions (NGS magnitude, science object magnitude, turbulence conditions...) We developed models based on a Maréchal approximation to predict the Strehl ratio of the four GPAO modes in order to feed the already existing tool that simulates the GRAVITY performances. Waiting for commissioning data, our model was validated and calibrated using the TIPTOP toolbox, a Point Spread Function simulator based on the computation of Power Spectrum Densities. In this work, we present our models of the NGS modes of GPAO and their calibration with TIPTOP.
The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs ([U]BV, RIZ, YJH) providing a spectral resolution of ∼100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 μm with the goal of extending it to 0.35-2.4 μm with the addition of an U arm to the BV spectrograph and a separate K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Modularity and fibre-feeding allows ANDES to be placed partly on the ELT Nasmyth platform and partly in the Coudé room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of almost 300 scientists and engineers which include the majority of the scientific and technical expertise in the field that can be found in ESO member states.
ANDES is a high resolution spectrograph for the ELT, with the goal of providing simultaneous spectra with R 100000 from 0.35 to 2.4 micrometer. The baseline of the instrument covers 0.4 - 1.8 micron. Here we present the study on the extension into the K-band (1.95 to 2.45 micron) with its scientific motivation and the technical solution. The spectrograph design is constrained by external limits, but a solution is found that enables key science cases in this wavelength range and closes the gap in ELT high resolution spectroscopy between the ANDES baseline and the METIS instrument. The spectrograph design is throughput-optimized and is fed by the diffraction-limited input from the ANDES SCAO system. We summarize the preliminary optical and cryo-mechanical design. But, as the available mass is one of the critical parameters, we also look into an alternative implementation of the spectrograph with carbon fiber.
We report on the design of 2ES (Second Earth Initiative Spectrograph): a new fiber-fed, high-resolution, high-precision radial velocity echelle spectrograph for the 2.2m ESO/MPG telescope in Chile, which will cover the visible wavelength range ∼370nm to 850nm with a resolution of 120, 000. 2ES will be dedicated to a >5-year observing program with access to the majority (2/3) of the telescope time with the goal of discovering temperate terrestrial Earth-mass planets in the habitable zone around the bright solar-type stars. To achieve this goal, 2ES aims for ultra-high instrumental radial-velocity precision and an observing strategy that involves high-cadence observation of the brightest Sun-like stars in the Southern Hemisphere. Here, we present an overview of the project, its observation strategy, the optical design as well as the opto-mechanical concepts and calibration strategies to achieve the required instrument stability.
The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs (UBV, RIZ, YJH) providing a spectral resolution of ∼100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 µm with the goal of extending it to 0.35-2.4 µm with the addition of a K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Its modularity will ensure that ANDES can be placed entirely on the ELT Nasmyth platform, if enough mass and volume is available, or partly in the Coudé room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of more than 200 scientists and engineers which represent the majority of the scientific and technical expertise in the field among ESO member states.
With the upgrade from GRAVITY to GRAVITY+ the instrument will evolve to an all-sky interferometer that can observe faint targets, such as high redshift AGN. Observing the faintest targets requires reducing the noise sources in GRAVITY as much as possible. The dominant noise source, especially in the blue part of the spectrum, is the backscattering of the metrology laser light onto the detector. To reduce this noise we introduce two new metrology modes. With a combination of small hardware changes and software adaptations, we can dim the metrology laser during the observation without losing the phase referencing. For single beam targets, we can even turn off the metrology laser for the maximum SNR on the detector. These changes lead to a SNR improvement of over a factor of two averaged over the whole spectrum and up to a factor of eight in the part of the spectrum currently dominated by laser noise.
As part of the GRAVITY+ project, the near-infrared beam combiner GRAVITY and the VLTI are currently undergoing a series of significant upgrades to further improve the performance and sky coverage. The instrumental changes will be transformational, and for instance uniquely position GRAVITY to observe the broad line region of hundreds of Active Galactic Nuclei (AGN) at a redshift of two and higher. The increased sky coverage is achieved by enlarging the maximum angular separation between the celestial science object (SC) and the off-axis fringe tracking (FT) star from currently 2 arcseconds (arcsec) up to unprecedented 30 arcsec, limited by the atmospheric conditions. This was successfully demonstrated at the VLTI for the first time.
We present the testbench aimed at integrating the GRAVITY+ adaptive optics GPAO. It consists of two independent elements, one reproducing the Coudé focus of the telescope, including the telescope deformable mirror mount (with its surface facing down), and one reproducing the Coudé room opto-mechanical environment, including a downwards-propagating beam, and the telescope mechanical interfaces in order to fit in the new GPAO wavefront sensor. We discuss in this paper the design of this bench and the solutions we adopted to keep the cost low, keep the design compact (allowing it to be fully contained in a 20 sqm clean room), and align the bench independently from the adaptive optics. We also discuss the features we have set in this bench.
Combining adaptive optics and interferometric observations results in a considerable contrast gain compared to single-telescope, extreme AO systems. Taking advantage of this, the ExoGRAVITY project is a survey of known young giant exoplanets located in the range of 0.1” to 2” from their stars. The observations provide astrometric data of unprecedented accuracy, being crucial for refining the orbital parameters of planets and illuminating their dynamical histories. Furthermore, GRAVITY will measure non-Keplerian perturbations due to planet-planet interactions in multi-planet systems and measure dynamical masses. Over time, repetitive observations of the exoplanets at medium resolution (R = 500) will provide a catalogue of K-band spectra of unprecedented quality, for a number of exoplanets. The K-band has the unique properties that it contains many molecular signatures (CO, H2O, CH4, CO2). This allows constraining precisely surface gravity, metallicity, and temperature, if used in conjunction with self-consistent models like Exo-REM. Further, we will use the parameter-retrieval algorithm petitRADTRANS to constrain the C/O ratio of the planets. Ultimately, we plan to produce the first C/O survey of exoplanets, kick-starting the difficult process of linking planetary formation with measured atomic abundances.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.