A compact broadband atmospheric gas spectrometer has been developed in the framework of the EU-H2020 FLAIR project. The system is composed of a mid-IR 2-4um broadband supercontinuum source, a temperature controlled 10- meter-long multipass-cell for light-gas interaction, a diffraction grating, and an uncooled PbSe-on-CMOS matrix detector recording absorption spectra. The detection limit has been measured at sub-ppm level on methane under laboratory conditions. We also present 2 successful field measurement campaigns aboard airborne platforms: a hot-air airship for controlled methane release experiments, and a helicopter tracking ship exhaust fumes abroad the coastline of Denmark, with special emphasis on methane detection.
In this work a novel accurate method of measuring beam fluctuations is presented and applied to analyze transverse mode instabilities (TMI). The new measurement, ST-measurement, uses Fourier analysis on data from a high-speed camera to achieve raw spatial information about beam fluctuations. TMI in a 65 μm mode- field-diameter aeroGain-ROD-PM85 fiber is investigated using both the ST- and standard photo detector measurement. A comparison of the two measurements shows the quantitative and qualitative superiority of the new ST-measurement due to the spatial information. Numerical simulations are carried out to support the interpretation of the data.
Mid-IR supercontinuum sources are a new type of source for the 2-4.5 μm spectrum, but their weight, size and power consumption has previously made them unsuitable for mobile sensing. We demonstrate a highly compact supercontinuum source with a weight of <1 kg and a power consumption of <15 W emitting a spectral brightness comparable to that of a synchrotron and covering the entire 1.8-4.4 μm spectrum. We will also discuss challenges and opportunities of working with a broadband source instead of a single line or tunable source and touch upon the future potential for supercontinuum reaching further into the mid-IR
We present a novel mid-infrared imaging system born from the combination of an all-fiber mid-IR supercontinuum source developed at NKT with ultra-sensitive upconversion detection technology from DTU Fotonik. The source delivers 100 mW of average power and its spectrum extends up to 4.5 μm. The infrared signal is passed through a sample and then focused into a bulk AgGaS2 crystal and subsequently mixed with a synchronous mixing signal at 1550 nm extracted from the pump laser of the supercontinuum. Through sum frequency generation, an upconverted signal ranging from 1030 nm to 1155 nm is generated and acquired using an InGaAs camera.
spectroscopy has until now been greatly limited by the availability of lightsources. The choice has generally stood between a laser whose narrow spectrum limits flexibility or a globar, whose low brightness limits signal to noise ratio. Mid-IR supercontinuum sources, which can deliver an ultra-broad spectrum with a million times higher brightness than a globar, are now appearing to fill the performance gap between the traditional lightsources. The generation of a supercontinuum is a highly nonlinear process produced by high peak power pulses propagating through a nonlinear medium. Since the underlying processes are fundamentally random there will normally be some pulse to pulse fluctuation in the output light which can cause problems in spectroscopy. Most of the mid-IR supercontinuum sources shown to date have also been limited to pulse repetition rates of only a few tens of kilohertz which makes it difficult to apply them to the popular FTIR spectroscopy techniques.
Here we will demonstrate a fully packaged, all-fiber, turn-key, low noise, 4.8W, 1.8-4.2 μm supercontinuum source, which can operate with variable repetition rates of up to 30 MHz. In addition we will discuss ways to reduce and counter the effects of pulse fluctuations and we demonstrate optimization of the output spectrum of the source for various applications. Such a source can give any mid-IR optics lab access to a performance which has previously only been available from dedicated beamlines at huge synchrotron facilities.
The extension of supercontinuum (SC) sources into the mid-infrared, via the use of uoride and chalcogenide optical fibers, potentially offers the high radiance of a laser combined with spectral coverage far exceeding that of typical tunable lasers and comparable to traditional black-body emitters. Together with advances in mid-IR imaging detectors and novel tunable filter designs, such supercontinua hold considerable potential as sources of illumination for spectrally-resolved microscopy targeting applications such as rapid histological screening. The ability to rapidly and arbitrarily select particular wavelengths of interest from a broad emission spectrum, covering a wide range of biologically relevant targets, lends itself to image acquisition only at key relevant wavelengths leading to more manageable datasets. However, in addition to offering new imaging modalities, SC sources also present a range of challenges to successful integration with typical spectral microscopy instrumentation, including appropriate utilisation of their high spatial coherence. In this paper the application of SC sources to spectrally-resolved microscopy in the mid-IR is discussed and systems-integration considerations specific to these sources highlighted. Preliminary results in the 3-5μm region, obtained within the European FP7 project MINERVA, are also presented here.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.