Here, we experimentally demonstrate broadband nonlinear imaging by using Si resonant metasurfaces based on third-order nonlinear processes, including third harmonic generation (THG) and four-wave mixing (FWM). Particularly, the quadratic dependence of the FWM emission on the pump power allows to significantly reduce the dependence on high-power signal input in nonlinear imaging via designing a high-Q resonance at the pump wavelength based on bound states in the continuum (BICs). In the experiment, our metasurfaces support high-performance infrared imaging, including a large acceptance angle, a high frame rate, and a wide range of operating wavelengths (from 900 nm to 2500 nm).
We propose a metasurface-based shadow tomography protocol to measure the properties of quantum states efficiently. We design Si nano-disks based metagratings that act as efficient polarizing beam splitters and can distinguish orthogonal polarizations. This allows for the measurement of all necessary quantum state observables in parallel, reducing the time needed to characterize quantum states of photonic qubits and minimizes the impact of decoherence. We validate our protocol by performing numerical simulations of a two-qubit system with metasurface as quantum detectors. We show that the protocol can accurately estimate properties of quantum states with few measurements and without reconfiguring optical setups.
We study the nonlinear optical up-conversion of doubly resonant GaP metasurfaces based on bound state in the continuum (BIC) resonances driven by leaky-waveguide modes. The fabricated metasurface is simultaneously illuminated by two excitation beams, pump and signals beams, exciting transverse-electric and -magnetic waveguide modes. The nonlinear mixing of these modes results in generation of strong sum-frequency emission in the visible spectrum. We observe a non-trivial dependence of the sum-frequency emission with the polarization of the pump beam, explained by the excitation of multipoles at the SFG wavelength. A normalized conversion efficiency of 3.5 × 10-5 [W-1] is measured in the forward direction.
we exploit the resonance inside the slab to boost the second-harmonic generation from the lithium niobate half-etching-slab metasurface system, which hosts two kinds of BIC states formed by TE and TM odd modes. We reveal the mechanisms of the formation of the two BIC states and three main processes that influence the conversion efficiency from the pump light into the SH radiation. This approach of constructing boosted second-harmonic generation can be applied in any low-index nonlinear materials, which can expand a range of the applications, such as nonlinear imaging, quantum light source, and high-resolution sensing.
Infrared imaging is a crucial technique in a multitude of applications, including night vision, autonomous vehicle navigation, optical tomography, and food quality control. Conventional infrared imaging technologies, however, require the use of materials such as narrow bandgap semiconductors, which are sensitive to thermal noise and often require cryogenic cooling. We demonstrate a compact all-optical alternative to perform infrared imaging in a metasurface composed of GaAs semiconductor nanoantennas, using a nonlinear wave-mixing process. We experimentally show the upconversion of short-wave infrared wavelengths via the coherent parametric process of sum-frequency generation. In this process, an infrared image of a target is mixed inside the metasurface with a strong pump beam, translating the image from the infrared to the visible in a nanoscale ultrathin imaging device. Our results open up new opportunities for the development of compact infrared imaging devices with applications in infrared vision and life sciences.
High-index dielectric resonators support different types of resonant modes. However, it is challenging to achieve a high-Q factor in a single dielectric nanocavity due to the non-Hermitian property of the open system. We present a universal approach of finding out a series of high-Q resonant modes in a single nonspherical dielectric cavity with a rectangular cross section by exploring the quasi bound-state-in-the-continuum (QBIC). Unlike conventional methods relying on heavy brutal force computations (i.e., frequency scanning by the finite difference time domain method), our approach is built upon Mie mode engineering, through which many high-Q modes can be easily achieved by constructing avoid-crossing (or crossing) of the eigenvalue for pair-leaky modes. The calculated Q-factor of mode TE(5,7) can be up to Qtheory = 2.3 × 104 for a freestanding square nanowire (NW) (n = 4), which is 64 times larger than the highest Q-factor (Qtheory ≈ 360) reported so far in a single Si disk. Such high-Q modes can be attributed to suppressed radiation in the corresponding eigenchannels and simultaneously quenched electric (magnetic) field at momentum space. As a proof of concept, we experimentally demonstrate the emergence of the high-Q resonant modes [Q ≈ 211 for mode TE(3,4), Q ≈ 380 for mode TE(3,5), and Q ≈ 294 for mode TM(3,5)] in the scattering spectrum of a single silicon NW.
We investigate the high order anapole mode in single dielectric nanostructure with high refractive index from eigenmode perspective. We find that the anapole mode in both cylinder and sphere can only occur in the following two situations:(1) If only one mode is involved, the combined phase of intrinsic and extrinsic phase should be equal to 2π at certain frequency that is close to the resonance. (2) If two leaky modes are involved, the combined phase for each mode must be 2π at same frequency which is located between two resonances.
Dielectric metasurfaces have recently shown to be an excellent candidate for efficient frequency mixing at the nanoscale due to the excitation of Mie resonances. Among various dielectric materials, GaAs-based nanostructures have been reported to have high-efficiency of second-order nonlinear processes due to their high quadratic nonlinear susceptibility. Efficient frequency up-conversion can thereby be realised in GaAs-based metasurfaces through the process of sum-frequency generation (SFG), thereby opening new opportunities for nonlinear imaging and infrared vision not possible before. Here we demonstrate for the first time, infrared imaging based on nonlinear mixing of an infrared image with a pump beam in a GaAs resonant metasurface. The nonlinear mixing process generates visible images (Fig. 1a), which can be time resolved with femtosecond resolution and can be observed on a conventional CMOS sensor. Our results open new opportunities for the development of compact night-vision devices operating at room temperature and have multiple applications in defense and life sciences.
Generation of photon pairs in nonlinear materials enables the creation of non-classical entangled photon states. With ultra-thin metasurfaces, composed of optical nano-resonators, one can enable the ultimate in miniaturising nonlinear photon sources along with unprecedented configurability. We present a novel design of a nonlinear metasurface incorporating AlGaAs nanodisks with oligomer-holes, which features symmetry protected bound states in the continuum. It enables enhanced photon-pair generation at non-degenerate photon frequencies via spontaneous parametric down-conversion. This opens the potential for quantum-entanglement between photons at ultra-short time-scales across the visible and infrared regions, leading to new opportunities for quantum spectroscopy, sensing, and imaging.
We numerically and experimentally demonstrate an optical image processing technique in the form of edge detection of an object by exploring the angular selectivity of dielectric metasurfaces. By taking the advantages of resonant dielectric metasurfaces with spatial dispersion property, we efficiently filter-out the lower k-vector components of an image and only allow the higher k-vectors resulting in displaying the silhouettes of an object. We have considered dielectric amorphous silicon (a-Si) nanodisk with hexagonal structure interface which provides nearly zero transmission for lower k-vectors and near-unity transmission for higher k-vectors at the operating wavelength of 1550 nm. The proposed metasurface has been fabricated using electron beam lithography followed by a lift-off process. Our results suggest a new way to realize the effective edge detection with dielectric metasurfaces and open new opportunities for ultracompact optical image processing devices, having various applications in microscopy.
We propose an ultra-thin silicon metasurface supporting a high-quality leaky mode which is formed by partially breaking a bound-state-in-the-continuum (BIC) generated by the collective magnetic dipole (MD) resonance excited in the subdiffractive periodic systems. Such a quasi-BIC MD state leads to a robust near-field enhancement and a significant boost of the nonlinear process, resulting in measured 500-fold enhancement of third-harmonic emission in comparison to the conventional silicon disk metasurface. We further experimentally demonstrate the highly-efficient nonlinear image tuning via polarisation and wavelength control, opening the way for various applications in high-performance nonlinear metadevices including tunable laser, tunable displays, nonlinear imaging.
Switching the scattering direction of high-index dielectric nanoantennas between forward and backward, via Mie resonances in the linear regime, has been widely studied, recently. However, switching the harmonic emission of nanoantennas without applying any physical change to the antennas, such as geometry, or environment, is a chal- lenging task that has not been demonstrated yet. Here, we investigate multipolar second-harmonic switch from GaAs nanoantennas. Based on the peculiar nonlinearities of zinc-blende semiconductors, we demonstrate both theoretically and experimentally unidirectional nonlinear emission routing and switching via pump polarization control. Our results offer exciting opportunities for nonlinear nanophotonics technologies, such as nanoscale light routing elements, nonlinear light sources, nonlinear imaging, multifunctional flat optical elements.
The group of zincblende III-V compound semiconductors, especially (100)-grown AlGaAs and GaAs, have recently been presented as promising materials for second harmonic generation (SHG) at the nanoscale. However, major obstacles to push the technology towards practical applications are the limited control over directionality of the SH emission and especially zero forward/backward radiation. In this work we provide both theoretically and experimentally a solution to these problems by presenting the first SHG nanoantennas made from (111)-GaAs embedded in a low index material. These nanoantennas show superior forward directionality compared to their (100)-counterparts. Most importantly, it is possible to manipulate the SHG radiation pattern of the nanoantennas by changing the pump polarization without affecting the linear properties and the total nonlinear conversion efficiency.
We present an original design of a nonlinear metasurface featuring symmetry protected bound states in the continuum (BICs) which enable enhanced photon pair generation via the process of Spontaneous Parametric Down-Conversion (SPDC). We establish both analytical and numerical methods for the optimization of BIC modes which enables the simultaneous enhancement of non-degenerate photon frequencies. We achieve this by inserting oligomer holes into the AlGaAs nanodisks which, along with the symmetry of the lattice, allow us to select from a range of unit cell symmetries. The non-Mie eigenfunctions of the chosen symmetry group will form symmetry protected BICs for zero transverse momentum (Gamma point of the Brillouin zone). Away from the Gamma point, these BICs become high-quality factor Fano resonant modes, which can significantly enhance the photon pair generation. Because the BICs are symmetry protected, we are able to tune the design parameters of the metasurfaces to select pairs of wavelengths for which a non-degenerate SPDC process is enhanced.
We further utilize an analytical analysis of the classical-quantum correspondence between sum frequency generation (SFG) and SPDC for metasurfaces and thus predict the SPDC generation of our metasurface via numerical simulations of SFG over the first Brillouin zone.
The ultra-thin metasurface thickness removes the conventional restrictions associated with bulk phase-matching. This opens the potential for generation of photons with tailored quantum entanglement at ultra-short time-scales for photons across the visible and infrared spectral regions. Such features of quantum states can underpin advances in nonlinear quantum spectroscopy, low-light sensing, and ghost imaging.
Metsurfaces continue to find an increasing number of applications. We provide a brief explanation of how metasurfaces can be used for three-dimensional imaging, as demonstrated by C. Jin et al in Advanced Photonics, Volume 1, Issue 3.
With recent advances in nanophotonics, metasurfaces based on nano-resonators have facilitated novel types of optical devices. In particular, the interplay between different degrees of freedom, involving polarization and spatial modes, boosted classical polarization measurements and imaging applications. However, the use of metasurfaces for measuring the quantum states of light remains largely unexplored. Conventionally, the task of quantum state tomography is realized with several bulk optical elements, which need to be reconfigured multiple times. Such setups can suffer from decoherence, and there is a fundamental and practical interest in developing integrated solutions for measurement of multi-photon quantum states. We present a new concept and the first experimental realization of all-dielectric metasurfaces with no tuneable elements for imaging-based reconstruction of the full quantum state of entangled photons. Most prominently, we implement multi-photon interferometric measurements on a sub-wavelength thin optical element, which delivers ultimate miniaturization and extremely high robustness. Specifically, we realize a highly transparent all-dielectric metasurface, which spatially splits different components of quantum-polarization states. Then, a simple one-shot measurement of correlations with polarization-insensitive on-off click detectors enables complete reconstruction of multi-photon density matrices with high precision. In our experiment, we prepare sets of polarization states and reconstruct their density matrices with a high fidelity of over 99% for single photon states and above 95% for two-photon states. Our work provides a fundamental advance in the imaging of quantum states, where multi-photon quantum interference takes place at sub-wavelength scale.
Here we review our journey from metallic nanostructures to dielectric and semiconductor metasurfaces. We show how to employ metal non-linearity to stimulate a strongly anisotropic nonlinear response by symmetry breaking, despite their high Ohmic losses. Furthermore, we show how an ultra-thin surface of subwavelength dielectric nanostructures, e.g. silicon with negligible losses and multipolar characteristics, can enable enhanced light matter interaction for efficient third harmonic generation and ultra-fast light modulation. However, the centrosymmetric structure of silicon and the lack of quadratic nonlinearity, guided us towards exploiting semiconductor nanostructures, particularly III-V semiconductors. Subsequently, we demonstrate dielectric realization of AlGaAs nanoantennas for an efficient second harmonic generation, allowing the control of both directionality and polarization of nonlinear emission. This is enabled through the fabricated high-quality AlGaAs nanostructures embedded in an optically transparent low-index material. Our results open novel applications in ultra-thin light sources, light switches and modulators, ultra-fast displays, night-vision and other nonlinear optical metadevices based on resonant nanoparticles.
Dielectric nanoantennas and metasurfaces have proven to be able to manipulate the wavefront of incoming waves with high transmission efficiency. The important next question is: Can they enable enhanced interaction with the light to transform its colour or to be able to control one light beam with another? Here we show how a dielectric nano-resonator of subwavelength size can enable enhanced light matter interaction for efficient nonlinear frequency conversion. In particular, we show how AlGaAs or silicon nanoantennas can enhance second and third harmonic generation, respectively. Importantly, by controlling the size of the antennas, we can achieve control of directionality and polarisation state of the emission of harmonics. Our results open novel applications in ultra-thin light sources, light switches and modulators, ultra-fast displays, and other nonlinear optical metadevices based on low loss subwavelength dielectric resonant nanoparticles.
Optical nanoantennas possess great potential for controlling the spatial distribution of light in the linear regime as well as for frequency conversion of the incoming light in the nonlinear regime. However, the usually used plasmonic nanostructures are highly restricted by Ohmic losses and heat resistance. Dielectric nanoparticles like silicon and germanium can overcome these constrains [1,2], however second harmonic signal cannot be generated in these materials due to their centrosymmetric nature. GaAs-based III-V semiconductors, with non-centrosymmetric crystallinity, can produce second harmonic generation (SHG) [3]. Unfortunately, generating and studying SHG by AlGaAs nanocrystals in both backward and forward directions is very challenging due to difficulties to fabricate III-V semiconductors on low-refractive index substrate, like glass. Here, for the first time to our knowledge, we designed and fabricated AlGaAs nanoantennas on a glass substrate. This novel design allows the excitation, control and detection of backwards and forwards SHG nonlinear signals. Different complex spatial distribution in the SHG signal, including radial and azimuthal polarization originated from the excitation of electric and magnetic multipoles were observed. We have demonstrated an unprecedented SHG conversion efficiency of 10-4; a breakthrough that can open new opportunities for enhancing the performance of light emission and sensing [4].
References
[1] A. S. Shorokhov et al. Nano Letters 16, 4857 (2016).
[2] G. Grinblat et al. Nano Letters 16, 4635 (2016).
[3] S. Liu et al. Nano Letters 16, 7191 (2016).
[4] R. Camacho et al. Nano Lett. 16, 7191 (2016).
Metallic nanoantenna possess versatile scattering properties enabling to engineer the emission directionality at the nanoscale. However, due to their Ohmic losses and low heat resistance they cannot be practically applied in nonlinear optical processes for optical frequency conversion. Dielectric nanoparticles, e.g. silicon and germanium, are good candidates to overcome these limitations [1, 2]. Nevertheless, the centrosymmetric nature of these materials have voided the second-harmonic generation (SHG). Alternatively, the use of GaAs-based III-V semiconductors, with non-centrosymmetric structures, can overcome this difficulty [3,4]. However, fabrication of III-V semiconductor nanoantennas on low refractive index substrates remains very challenging, blocking the possibility to explore the SHG directionality in both forward and backward direction. Here, for the first time to our knowledge, we design and fabricate high-quality AlGaAs nanostructures on a glass substrate. Through this novel platform, we manage to excite, control and detect backward and forward nonlinear signals by SHG in AlGaAs nanodisks [5,6]. In particular, we observe that for certain size of nanoantenna, the SHG emission has a complex spatial distribution polarization state corresponding to radial polarization in the forward direction and a polarization state of a more general nature in the backward direction. Furthermore, we demonstrate an unprecedented SHG conversion efficiency of 10-4. Our breakthrough can open new avenues for enhancing the performance of photodetection, light emission and sensing.v
Transverse localization of light in one-dimensional waveguide arrays with width disorder has been studied in
both linear and nonlinear regimes. Defect mode is generated in the bandgap of the disordered waveguide array
when introducing refractive index modulation into a single waveguide, and its localization strength depends on
the width disorder level of the waveguide array. The evolution of the nonlinear disordered modes with either the
self-focusing or the self-defocusing optical nonlinearities has been studied. The results show that the nonlinear
disordered modes may be delocalized significantly due to the resonant interaction with the nearby eigen modes
in the width-disordered waveguide array.
In this paper, we reviewed the theoretical and experimental studies on the manipulation of the group delay of
light based on the transverse phase modulation effect induced by a Gaussian beam. We introduced the basic
theory of slow and fast lights in a thin nonlinear material based on the transverse phase modulation effect.
We introduced a simple but effective technique to actively and chromatically control the group velocity of light
at arbitrary wavelength, therefore, eliminating the requirements on the optical nonlinearity and the photonic
resonance at the signal wavelength. Furthermore, a technique to improve the transverse-modulation-induced
relative delay of light in nonlinear media through the combination of an optical nonlinearity and a resonant
Fabry-Perot cavity was introduced and theoretically demonstrated in ruby as an example. The introduction of
a resonant Fabry-Perot cavity can improve the relative delay by orders of magnitude. The techniques of active
chromatic manipulation and resonant improvement of the group delay of light may have potential applications
in optical information processing and optical communication network.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.