The Black Hole Explorer (BHEX) mission will enable the study of the fine photon ring structure, aiming to reveal the clear universal signatures of multiple photon orbits and true tests of general relativity, while also giving astronomers access to a much greater population of black hole shadows. Spacecraft orbits can sample interferometric Fourier spacings that are inaccessible from the ground, providing unparalleled angular resolution for the most detailed spatial studies of accretion and photon orbits and better time resolution. The BHEX mission concept provides space Very Long Baseline Interferometry (VLBI) at submillimeter wavelengths measurements to study black holes in coordination with the Event Horizon Telescope and other radio telescopes. This report presents the BHEX engineering goals, objectives and TRL analysis for a selection of the BHEX subsystems. This work aims to lay some of the groundwork for a near-term Explorers class mission proposal.
We present a baseline science operations plan for the Black Hole Explorer (BHEX), a space mission concept aiming to confirm the existence of the predicted sharp “photon ring” resulting from strongly lensed photon trajectories around black holes, as predicted by general relativity, and to measure its size and shape to determine the black hole’s spin. BHEX will co-observe with a ground-based very long baseline interferometric (VLBI) array at high-frequency radio wavelengths, providing unprecedented high resolution with the extension to space that will enable photon ring detection and studies of active galactic nuclei. Science operations require a simultaneous coordination between BHEX and a ground array of large and small radio apertures to provide opportunities for surveys and imaging of radio sources, while coordination with a growing network of optical downlink terminals provides the data rates necessary to build sensitivity on long baselines to space. Here we outline the concept of operations for the hybrid observatory, the available observing modes, the observation planning process, and data delivery to achieve the mission goals and meet mission requirements.
The Event Horizon Explorer (EHE) is a mission concept to extend the Event Horizon Telescope via an additional space-based node. We provide highlights and overview of a concept study to explore the feasibility of such a mission. We present science goals and objectives, which include studying the immediate environment around supermassive black holes, and focus on critical enabling technologies and engineering challenges. We provide an assessment of their technological readiness and overall suitability for a NASA Medium Explorer (MIDEX) class mission.
Thanks to the first mm studies on the territory of the former USSR in the early 1960s and succeeding sub-mm measurements in the 1970s – early 1980s at wavelengths up to 0.34 mm, a completely unique astroclimate was revealed in the Eastern Pamirs, only slightly inferior to the available conditions on the Chajnantor plateau in Chile and Mauna Kea. Due to its high plateau altitude (4300 – 4500 m) surrounded from all sides by big (~7000 m) air-drying icy mountains and remoteness from oceans this area has the lowest relative humidity in the former USSR and extremely high atmospheric stability. In particular, direct measurements of precipitated water vapor in the winter months showed typical pwv=0.8 – 0.9 mm with sometimes of 0.27 mm. To validate previous studies and to compare them with results for other similar regions we performed opacity calculations at mm – sub-mm wavelengths for different sites in the Eastern Pamirs, Tibet, Indian Himalayas, APEX, ALMA, JCM, LMT and many others. To do this we integrate radiative transfer equations using the output of NASA Global Modeling and Assimilation Office model GEOS-FPIT for more than 12 years. We confirm previous conclusions about exceptionally good astroclimate in the Eastern Pamirs. Due to its geographical location, small infrastructure and the absence of any interference in radio and optical bands, this makes the Eastern Pamirs the best place in the Eastern Hemisphere for both optical and sub-mm astronomy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.